PAC-Bayesian Bounds based on the Rényi Divergence
暂无分享,去创建一个
François Laviolette | Pascal Germain | Jean-Francis Roy | Luc Bégin | Pascal Germain | François Laviolette | Jean-Francis Roy | L. Bégin
[1] Tommi S. Jaakkola,et al. Tight Bounds for the Expected Risk of Linear Classifiers and PAC-Bayes Finite-Sample Guarantees , 2014, AISTATS.
[2] Gilles Blanchard,et al. Occam's Hammer , 2006, COLT.
[3] Pierre Alquier,et al. On the properties of variational approximations of Gibbs posteriors , 2015, J. Mach. Learn. Res..
[4] John Shawe-Taylor,et al. Tighter PAC-Bayes bounds through distribution-dependent priors , 2013, Theor. Comput. Sci..
[5] John Shawe-Taylor,et al. PAC-Bayes & Margins , 2002, NIPS.
[6] David A. McAllester. PAC-Bayesian Stochastic Model Selection , 2003, Machine Learning.
[7] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[8] Naftali Tishby,et al. PAC-Bayesian Analysis of Co-clustering and Beyond , 2010, J. Mach. Learn. Res..
[9] John Shawe-Taylor,et al. PAC-Bayesian Inequalities for Martingales , 2011, IEEE Transactions on Information Theory.
[10] Andreas Maurer,et al. A Note on the PAC Bayesian Theorem , 2004, ArXiv.
[11] G. Crooks. On Measures of Entropy and Information , 2015 .
[12] Arindam Banerjee,et al. On Bayesian bounds , 2006, ICML.
[13] Christoph H. Lampert,et al. Lifelong Learning with Non-i.i.d. Tasks , 2015, NIPS.
[14] Neri Merhav,et al. Information-theoretic applications of the logarithmic probability comparison bound , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).
[15] Shiliang Sun,et al. PAC-bayes bounds with data dependent priors , 2012, J. Mach. Learn. Res..
[16] Thore Graepel,et al. A PAC-Bayesian Margin Bound for Linear Classifiers: Why SVMs work , 2000, NIPS.
[17] Peter Harremoës,et al. Rényi Divergence and Kullback-Leibler Divergence , 2012, IEEE Transactions on Information Theory.
[18] Ran El-Yaniv,et al. Explicit Learning Curves for Transduction and Application to Clustering and Compression Algorithms , 2004, J. Artif. Intell. Res..
[19] François Laviolette,et al. Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm , 2015, J. Mach. Learn. Res..
[20] François Laviolette,et al. PAC-Bayesian Theory for Transductive Learning , 2014, AISTATS.
[21] Paul Dupuis,et al. Robust Bounds on Risk-Sensitive Functionals via Rényi Divergence , 2013, SIAM/ASA J. Uncertain. Quantification.
[22] A. Rényi. On Measures of Entropy and Information , 1961 .
[23] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[24] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[25] François Laviolette,et al. PAC-Bayesian learning of linear classifiers , 2009, ICML '09.
[26] O. Catoni. PAC-BAYESIAN SUPERVISED CLASSIFICATION: The Thermodynamics of Statistical Learning , 2007, 0712.0248.
[27] David A. McAllester. Some PAC-Bayesian Theorems , 1998, COLT' 98.
[28] Matthias W. Seeger,et al. Bayesian Gaussian process models : PAC-Bayesian generalisation error bounds and sparse approximations , 2003 .
[29] D. Anderson,et al. Algorithms for minimization without derivatives , 1974 .
[30] David A. McAllester. A PAC-Bayesian Tutorial with A Dropout Bound , 2013, ArXiv.