Cortical microstructural gradients capture memory network reorganization in temporal lobe epilepsy

Temporal lobe epilepsy (TLE), one of the most common pharmaco-resistant epilepsies, is associated with pathology of paralimbic brain regions, particularly in the mesiotemporal lobe. Cognitive dysfunction in TLE is frequent, and particularly affects episodic memory. Crucially, these difficulties challenge the quality of life of patients, sometimes more than seizures, underscoring the need to assess neural processes of cognitive dysfunction in TLE to improve patient management. Our work harnessed a novel conceptual and analytical approach to assess spatial gradients of microstructural differentiation between cortical areas based on high-resolution MRI analysis. Gradients track region-to-region variations in intracortical lamination and myeloarchitecture, serving as a system-level measure of structural and functional reorganization. Comparing cortex-wide microstructural gradients between 21 patients and 35 healthy controls, we observed a contracted gradient in TLE driven by reduced microstructural differentiation between paralimbic cortices and the remaining cortex with marked abnormalities in ipsilateral temporopolar and dorsolateral prefrontal regions. Findings were replicated in an independent cohort. Using an independent post mortem dataset, we observed that in vivo findings reflected topographical variations in cortical lamination patterns, confirming that TLE-related changes in the microstructural gradient reflected increased proximity of regions with more dissimilar laminar structure. Disease-related transcriptomics could furthermore show specificity of our findings to TLE over other common epilepsy syndromes. Finally, microstructural dedifferentiation was associated with cognitive network reorganization seen during an episodic memory functional MRI paradigm, and correlated with inter-individual differences in task accuracy. Collectively, our findings showing a pattern of reduced microarchitectural differentiation between paralimbic regions and the remaining cortex provide a parsimonious explanation for functional network reorganization and cognitive dysfunction characteristic of TLE.

[1]  L. Concha,et al.  Structural network alterations in focal and generalized epilepsy assessed in a worldwide ENIGMA study follow axes of epilepsy risk gene expression , 2022, Nature Communications.

[2]  S. Vos,et al.  Episodic memory network connectivity in temporal lobe epilepsy , 2022, Epilepsia.

[3]  Christine L. Tardif,et al.  Micapipe: A pipeline for multimodal neuroimaging and connectome analysis , 2022, NeuroImage.

[4]  L. Bonilha,et al.  Epilepsy and brain network hubs , 2022, Epilepsia.

[5]  J. Smallwood,et al.  Perceptual coupling and decoupling are associated with individual differences in working memory encoding and maintenance , 2022, Cerebral cortex.

[6]  V. Sziklas,et al.  Atypical functional connectome hierarchy impacts cognition in temporal lobe epilepsy , 2021, Epilepsia.

[7]  Reinder Vos de Wael,et al.  An Open MRI Dataset For Multiscale Neuroscience , 2021, bioRxiv.

[8]  D. Margulies,et al.  The default mode network in cognition: a topographical perspective , 2021, Nature Reviews Neuroscience.

[9]  Alan C. Evans,et al.  The ENIGMA Toolbox: multiscale neural contextualization of multisite neuroimaging datasets , 2021, Nature Methods.

[10]  Reinder Vos de Wael,et al.  Genetic and phylogenetic uncoupling of structure and function in human transmodal cortex , 2021, Nature Communications.

[11]  Ali R. Khan,et al.  BigBrainWarp: Toolbox for integration of BigBrain 3D histology with multimodal neuroimaging , 2021, bioRxiv.

[12]  V. Sziklas,et al.  Altered communication dynamics reflect cognitive deficits in temporal lobe epilepsy , 2021, Epilepsia.

[13]  V. Ives-Deliperi,et al.  Mechanisms of cognitive impairment in temporal lobe epilepsy: A systematic review of resting-state functional connectivity studies , 2020, Epilepsy & Behavior.

[14]  Jeffery A. Hall,et al.  A multi-scale cortical wiring space links cellular architecture and functional dynamics in the human brain , 2020, PLoS biology.

[15]  Reinder Vos de Wael,et al.  Perceptual coupling and decoupling of the default mode network during mind-wandering and reading , 2020, bioRxiv.

[16]  R. Kuzniecky,et al.  Temporal Lobe Epilepsy Surgical Outcomes Can Be Inferred Based on Structural Connectome Hubs: A Machine Learning Study , 2020, Annals of neurology.

[17]  Veena A. Nair,et al.  Network, clinical and sociodemographic features of cognitive phenotypes in temporal lobe epilepsy , 2020, NeuroImage: Clinical.

[18]  Reinder Vos de Wael,et al.  Functional connectome contractions in temporal lobe epilepsy: Microstructural underpinnings and predictors of surgical outcome , 2020, Epilepsia.

[19]  L. Concha,et al.  Network-based atrophy modeling in the common epilepsies: A worldwide ENIGMA study , 2020, Science Advances.

[20]  Alan C. Evans,et al.  Myeloarchitecture gradients in the human insula: Histological underpinnings and association to intrinsic functional connectivity , 2020, NeuroImage.

[21]  Tobias C. Wood,et al.  Microstructural imaging in temporal lobe epilepsy: Diffusion imaging changes relate to reduced neurite density , 2020, NeuroImage: Clinical.

[22]  Reinder Vos de Wael,et al.  Shifts in myeloarchitecture characterise adolescent development of cortical gradients , 2019, eLife.

[23]  Daniel S. Margulies,et al.  BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets , 2019, Communications Biology.

[24]  Boris C. Bernhardt,et al.  Multidimensional associations between cognition and connectome organization in temporal lobe epilepsy , 2019, NeuroImage.

[25]  José Fernando Zapata Berruecos,et al.  Reelin, tau phosphorylation and psychiatric complications in patients with hippocampal sclerosis and structural abnormalities in temporal lobe epilepsy , 2019, Epilepsy & Behavior.

[26]  Erik Kaestner,et al.  Cognitive phenotypes in temporal lobe epilepsy are associated with distinct patterns of white matter network abnormalities , 2019, Neurology.

[27]  Shahin Tavakol,et al.  Multiscale Structure-Function Gradients in the Neonatal Connectome. , 2019, Cerebral cortex.

[28]  H. Barbas,et al.  The Structural Model: a theory linking connections, plasticity, pathology, development and evolution of the cerebral cortex , 2019, Brain Structure and Function.

[29]  Hao-Ting Wang,et al.  Modes of operation: A topographic neural gradient supporting stimulus dependent and independent cognition , 2019, NeuroImage.

[30]  Ben D. Fulcher,et al.  Bridging the Gap between Connectome and Transcriptome , 2019, Trends in Cognitive Sciences.

[31]  Alan C. Evans,et al.  Microstructural and functional gradients are increasingly dissociated in transmodal cortices , 2019, PLoS biology.

[32]  Christian Gieger,et al.  Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies , 2018, Nature Communications.

[33]  K. Zilles,et al.  Cortical Gradients and Laminar Projections in Mammals , 2018, Trends in Neurosciences.

[34]  Ben D. Fulcher,et al.  Multimodal gradients across mouse cortex , 2018, Proceedings of the National Academy of Sciences.

[35]  A. Bernacchia,et al.  Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography , 2018, Nature Neuroscience.

[36]  Reinder Vos de Wael,et al.  Atypical functional connectome hierarchy in autism , 2018, Nature Communications.

[37]  Hao-Ting Wang,et al.  Distant from input: Evidence of regions within the default mode network supporting perceptually-decoupled and conceptually-guided cognition , 2018, NeuroImage.

[38]  Luis Concha,et al.  Association of white matter diffusion characteristics and cognitive deficits in temporal lobe epilepsy , 2018, Epilepsy & Behavior.

[39]  Neda Bernasconi,et al.  Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study , 2018, Brain : a journal of neurology.

[40]  G. Jackson,et al.  Cognitive impairment in epilepsy: the role of reduced network flexibility , 2017, Annals of clinical and translational neurology.

[41]  Maria Thom,et al.  Histopathological Findings in Brain Tissue Obtained during Epilepsy Surgery , 2017, The New England journal of medicine.

[42]  Yohan J. John,et al.  Mirror trends of plasticity and stability indicators in primate prefrontal cortex , 2017, The European journal of neuroscience.

[43]  Evan M. Gordon,et al.  Local-Global Parcellation of the Human Cerebral Cortex From Intrinsic Functional Connectivity MRI , 2017, bioRxiv.

[44]  Reinder Vos de Wael,et al.  Preferential susceptibility of limbic cortices to microstructural damage in temporal lobe epilepsy: A quantitative T1 mapping study , 2017, NeuroImage.

[45]  S. Rüdiger,et al.  New Insights on Temporal Lobe Epilepsy Based on Plasticity-Related Network Changes and High-Order Statistics , 2017, Molecular Neurobiology.

[46]  Dingding Han,et al.  Comprehensive transcriptome analysis of neocortical layers in humans, chimpanzees and macaques , 2017, Nature Neuroscience.

[47]  Martijn P. van den Heuvel,et al.  An MRI Von Economo – Koskinas atlas , 2016, NeuroImage.

[48]  E. Formisano,et al.  Reproducibility and Reliability of Quantitative and Weighted T1 and T2∗ Mapping for Myelin-Based Cortical Parcellation at 7 Tesla , 2016, Front. Neuroanat..

[49]  Elizabeth Jefferies,et al.  Situating the default-mode network along a principal gradient of macroscale cortical organization , 2016, Proceedings of the National Academy of Sciences.

[50]  Neda Bernasconi,et al.  The superficial white matter in temporal lobe epilepsy: a key link between structural and functional network disruptions. , 2016, Brain : a journal of neurology.

[51]  Danielle S. Bassett,et al.  Multi-scale brain networks , 2016, NeuroImage.

[52]  Yvonne Höller,et al.  Altered directed functional connectivity in temporal lobe epilepsy in the absence of interictal spikes: A high density EEG study , 2016, Epilepsia.

[53]  Neda Bernasconi,et al.  In vivo MRI signatures of hippocampal subfield pathology in intractable epilepsy , 2016, Human brain mapping.

[54]  Christine L. Tardif,et al.  A subject-specific framework for in vivo myeloarchitectonic analysis using high resolution quantitative MRI , 2016, NeuroImage.

[55]  Fenna M. Krienen,et al.  Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain , 2016, Proceedings of the National Academy of Sciences.

[56]  G. Winocur,et al.  Episodic Memory and Beyond: The Hippocampus and Neocortex in Transformation. , 2016, Annual review of psychology.

[57]  H. Barbas General cortical and special prefrontal connections: principles from structure to function. , 2015, Annual review of neuroscience.

[58]  P. B. Cipolloni,et al.  Cerebral Cortex: Architecture, Connections, and the Dual Origin Concept , 2015 .

[59]  S. Quake,et al.  A survey of human brain transcriptome diversity at the single cell level , 2015, Proceedings of the National Academy of Sciences.

[60]  Maged Goubran,et al.  Magnetic resonance imaging and histology correlation in the neocortex in temporal lobe epilepsy , 2015, Annals of neurology.

[61]  Robert Turner,et al.  Myelin and iron concentration in the human brain: A quantitative study of MRI contrast , 2014, NeuroImage.

[62]  Ludovica Griffanti,et al.  Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers , 2014, NeuroImage.

[63]  Abraham Z. Snyder,et al.  Human Connectome Project informatics: Quality control, database services, and data visualization , 2013, NeuroImage.

[64]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[65]  Maria Thom,et al.  International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: A Task Force report from the ILAE Commission on Diagnostic Methods , 2013, Epilepsia.

[66]  Alan C. Evans,et al.  BigBrain: An Ultrahigh-Resolution 3D Human Brain Model , 2013, Science.

[67]  P. Visscher,et al.  Pitfalls of predicting complex traits from SNPs , 2013, Nature Reviews Genetics.

[68]  Gavin P. Winston,et al.  A functional magnetic resonance imaging study mapping the episodic memory encoding network in temporal lobe epilepsy , 2013, Brain : a journal of neurology.

[69]  E. Bilevicius,et al.  Brain plasticity for verbal and visual memories in patients with mesial temporal lobe epilepsy and hippocampal sclerosis: An fMRI study , 2013, Human Brain Mapping.

[70]  Allan R. Jones,et al.  An anatomically comprehensive atlas of the adult human brain transcriptome , 2012, Nature.

[71]  Rita Garbelli,et al.  Blurring in patients with temporal lobe epilepsy: clinical, high-field imaging and ultrastructural study. , 2012, Brain : a journal of neurology.

[72]  L. Ang,et al.  Neuropathology of Temporal Lobe Epilepsy , 2012, Epilepsy research and treatment.

[73]  Allan R. Jones,et al.  Transcriptional Architecture of the Primate Neocortex , 2012, Neuron.

[74]  Michael W Weiner,et al.  Different structural correlates for verbal memory impairment in temporal lobe epilepsy with and without mesial temporal lobe sclerosis , 2012, Human brain mapping.

[75]  Chris P. Ponting,et al.  A Transcriptomic Atlas of Mouse Neocortical Layers , 2011, Neuron.

[76]  Jack J. Lin,et al.  The neurobiology of cognitive disorders in temporal lobe epilepsy , 2011, Nature Reviews Neurology.

[77]  Maria Thom,et al.  Investigation of widespread neocortical pathology associated with hippocampal sclerosis in epilepsy: A postmortem study , 2011, Epilepsia.

[78]  Tobias Kober,et al.  MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field , 2010, NeuroImage.

[79]  Bruce Fischl,et al.  Accurate and robust brain image alignment using boundary-based registration , 2009, NeuroImage.

[80]  Bruce Hermann,et al.  Neuroanatomical correlates of cognitive phenotypes in temporal lobe epilepsy , 2009, Epilepsy & Behavior.

[81]  KJ Worsley,et al.  SurfStat: A Matlab toolbox for the statistical analysis of univariate and multivariate surface and volumetric data using linear mixed effects models and random field theory , 2009, NeuroImage.

[82]  G. Baker,et al.  How can cognitive status predispose to psychological impairment? , 2009, Epilepsy & Behavior.

[83]  M. Saling,et al.  Verbal memory in mesial temporal lobe epilepsy: beyond material specificity. , 2009, Brain : a journal of neurology.

[84]  I. Blumcke,et al.  Neurogenesis in the human hippocampus and its relevance to temporal lobe epilepsies , 2008, Epilepsia.

[85]  John S. Duncan,et al.  Correlation of cognitive functions with voxel-based morphometry in patients with hippocampal sclerosis , 2008, Epilepsy & Behavior.

[86]  Chris Rorden,et al.  Extrahippocampal gray matter atrophy and memory impairment in patients with medial temporal lobe epilepsy , 2007, Human brain mapping.

[87]  Fong Chan,et al.  Cognitive phenotypes in temporal lobe epilepsy , 2006, Journal of the International Neuropsychological Society.

[88]  Naoki Nitta,et al.  Reelin Deficiency and Displacement of Mature Neurons, But Not Neurogenesis, Underlie the Formation of Granule Cell Dispersion in the Epileptic Hippocampus , 2006, The Journal of Neuroscience.

[89]  R. Buckner,et al.  Changing frontal contributions to memory before and after medial temporal lobectomy. , 2006, Cerebral cortex.

[90]  S. B. Eickhoff,et al.  Quantitative architectural analysis: a new approach to cortical mapping , 2005, Anatomy and Embryology.

[91]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[92]  Vincent Magnotta,et al.  Quantitative measurement of cortical surface features in localization-related temporal lobe epilepsy. , 2004, Neuropsychology.

[93]  A. Kaszniak,et al.  Bilateral hippocampal volume predicts verbal memory function in temporal lobe epilepsy , 2004, Epilepsy & Behavior.

[94]  C. Nordborg,et al.  Microdysgenesis in mesial temporal lobe epilepsy , 2004, Annals of neurology.

[95]  John S Duncan,et al.  Preserved verbal memory function in left medial temporal pathology involves reorganisation of function to right medial temporal lobe , 2003, NeuroImage.

[96]  H. Stefan,et al.  Microdysgenesis in mesial temporal lobe epilepsy: A clinicopathological study , 2003, Annals of neurology.

[97]  H. Spiers,et al.  Prefrontal and medial temporal lobe interactions in long-term memory , 2003, Nature Reviews Neuroscience.

[98]  A. Holtmaat,et al.  GAP‐43 mRNA and protein expression in the hippocampal and parahippocampal region during the course of epileptogenesis in rats , 2003, The European journal of neuroscience.

[99]  Daniel O'Leary,et al.  Extratemporal quantitative MR volumetrics and neuropsychological status in temporal lobe epilepsy. , 2003, Journal of the International Neuropsychological Society : JINS.

[100]  M. Frotscher,et al.  Role for Reelin in the Development of Granule Cell Dispersion in Temporal Lobe Epilepsy , 2002, The Journal of Neuroscience.

[101]  R. Henson,et al.  Frontal lobes and human memory: insights from functional neuroimaging. , 2001, Brain : a journal of neurology.

[102]  J B Poline,et al.  Episodic memory in left temporal lobe epilepsy: a functional MRI study. , 2000, Brain : a journal of neurology.

[103]  G. Avanzini,et al.  Quality of life and memory performance in patients with temporal lobe epilepsy , 2000, Acta neurologica Scandinavica.

[104]  Josemir W Sander,et al.  Microdysgenesis with abnormal cortical myelinated fibres in temporal lobe epilepsy: a histopathological study with calbindin D‐28‐K immunohistochemistry , 2000, Neuropathology and applied neurobiology.

[105]  M. Mesulam Principles of Behavioral and Cognitive Neurology , 2000 .

[106]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[107]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[108]  P. Morosan,et al.  Observer-Independent Method for Microstructural Parcellation of Cerebral Cortex: A Quantitative Approach to Cytoarchitectonics , 1999, NeuroImage.

[109]  M. Mesulam,et al.  From sensation to cognition. , 1998, Brain : a journal of neurology.

[110]  A. Connelly,et al.  The Relationship Between Quantitative MRI and Neuropsychological Functioning in Temporal Lobe Epilepsy , 1998, Epilepsia.

[111]  D. Andrewes,et al.  Degree of left hippocampal atrophy correlates with severity of neuropsychological deficits , 1997, Seizure.

[112]  Aryeh Routtenberg,et al.  GAP-43: an intrinsic determinant of neuronal development and plasticity , 1997, Trends in Neurosciences.

[113]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[114]  O. Lindvall,et al.  Delayed kindling development after rapidly recurring seizures: relation to mossy fiber sprouting and neurotrophin, GAP-43 and dynorphin gene expression , 1996, Brain Research.

[115]  J. Kapfhammer,et al.  Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice , 1995, Cell.

[116]  J. Cramer,et al.  The relationship of neuropsychological functioning to quality of life in epilepsy. , 1995, Archives of neurology.

[117]  T L Babb,et al.  Hippocampal neuron loss and memory scores before and after temporal lobe surgery for epilepsy. , 1993, Archives of neurology.

[118]  Gregory McCarthy,et al.  Quantitative magnetic resonance imaging in temporal lobe epilepsy: Relationship to neuropathology and neuropsychological function , 1992, Annals of neurology.

[119]  F. Scaravilli,et al.  The Neuropathology of Temporal Lobe Epilepsy. (Maudsley Monographs No 31.) , 1988 .

[120]  R. Neve,et al.  Growth-associated protein GAP-43 is expressed selectively in associative regions of the adult human brain. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[121]  A MEYER,et al.  Aetiological Aspects of Ammon's Horn Sclerosis Associated with Temporal Lobe Epilepsy* , 1956, British medical journal.

[122]  A MEYER,et al.  PATHOLOGICAL FINDINGS IN TEMPORAL LOBE EPILEPSY , 1954, Journal of neurology, neurosurgery, and psychiatry.

[123]  Julia M. Huntenburg,et al.  Large-Scale Gradients in Human Cortical Organization , 2018, Trends in Cognitive Sciences.

[124]  P. Rakic Progress: Neurogenesis in adult primate neocortex: an evaluation of the evidence , 2002, Nature Reviews Neuroscience.

[125]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[126]  Jerome Engel,et al.  Outcome with respect to epileptic seizures. , 1993 .

[127]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .