First-principles calculations of structural, electronic, vibrational, and magnetic properties of C60 and C48N12: A comparative study

The structural, electronic, vibrational, and magnetic properties of the C48N12 azafullerene and C60 are comparatively studied from the first-principles calculations. Full geometrical optimization and Mulliken charge analysis are performed. Electronic structure calculations of C48N12 show that the highest occupied molecular orbital (HOMO) is a doubly degenerate level of ag symmetry and the lowest unoccupied molecular orbital (LUMO) is a nondegenerate level of au symmetry. The calculated binding energy per atom and HOMO-LUMO energy gap of C48N12 are about 1 eV smaller than those of C60. Because of electron correlations, the HOMO-LUMO gap decreases about 5 eV and the binding energy per atom increases about 2 eV. The average second-order hyperpolarizability of C48N12 is about 55% larger than that of C60. Our vibrational frequency analysis predicts that C48N12 has 58 infrared-active and 58 Raman-active vibrational modes. Two different methods for calculating nuclear magnetic shielding tensors of C60 and C48N12...

[1]  J. G. Snijders,et al.  Time-dependent density functional study of the static second hyperpolarizability of BB-, NN- and BN-substituted C60 , 2002 .

[2]  C. Colliex,et al.  Cross-linked nano-onions of carbon nitride in the solid phase: existence of a novel C(48)N(12) aza-fullerene. , 2001, Physical review letters.

[3]  G. Bertsch,et al.  Real-space computation of dynamic hyperpolarizabilities , 2001 .

[4]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[5]  L. Hultman,et al.  Predicted stability of a new aza[60]fullerene molecule, C48N12 , 2001 .

[6]  K. Takeuchi,et al.  Normal vibrational analysis of the triplet excited state of C 60 , 2001 .

[7]  R. Xie Nonlinear optical properties of fullerenes and carbon nanotubes , 2001 .

[8]  Hari Singh Nalwa,et al.  Handbook of advanced electronic and photonic materials and devices , 2001 .

[9]  J. Gimzewski,et al.  Electronics using hybrid-molecular and mono-molecular devices , 2000, Nature.

[10]  J. Louderback,et al.  Absolute measurement of the optical polarizability of C60 , 2000 .

[11]  M. Kertész,et al.  Vibrational Assignment of All 46 Fundamentals of C60and C606-: Scaled Quantum Mechanical Results Performed in Redundant Internal Coordinates and Compared to Experiments , 2000 .

[12]  P. Dugourd,et al.  Direct measurement of the electric polarizability of isolated C60 molecules , 1999 .

[13]  J. G. Snijders,et al.  Implementation of time-dependent density functional response equations , 1999 .

[14]  Lai‐Sheng Wang,et al.  High resolution photoelectron spectroscopy of C60 , 1999 .

[15]  Evert Jan Baerends,et al.  Calculating frequency-dependent hyperpolarizabilities using time-dependent density functional theory , 1998 .

[16]  Evert Jan Baerends,et al.  Accurate density functional calculations on frequency-dependent hyperpolarizabilities of small molecules , 1998 .

[17]  Nicholas C. Handy,et al.  Improving virtual Kohn-Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities , 1998 .

[18]  L. Kipp,et al.  EXPERIMENTAL BAND GAP AND CORE-HOLE ELECTRON INTERACTION IN EPITAXIAL C60 FILMS , 1998 .

[19]  H. Ågren,et al.  Electric and magnetic properties of fullerenes , 1998 .

[20]  David B Cook,et al.  Handbook of Computational Quantum Chemistry , 1998 .

[21]  Mihály Kállay,et al.  Triplet state characteristics of higher fullerenes , 1998 .

[22]  J. G. Snijders,et al.  Time-dependent density functional result for the dynamic hyperpolarizabilities of C60. , 1997 .

[23]  Alessandro Curioni,et al.  Unconventional bonding of azafullerenes: Theory and experiment , 1996 .

[24]  Takeuchi,et al.  In situ high-resolution infrared spectroscopy of a photopolymerized C60 film. , 1996, Physical review. B, Condensed matter.

[25]  T. Keith,et al.  A comparison of models for calculating nuclear magnetic resonance shielding tensors , 1996 .

[26]  G. Scuseria Ab Initio Calculations of Fullerenes , 1996, Science.

[27]  Future Directions,et al.  NMR as a structural tool for macromolecules : current status and future directions , 1996 .

[28]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[29]  M. D. Kemple,et al.  NMR as a Structural Tool for Macromolecules , 1996, Springer US.

[30]  Walter Thiel,et al.  A density functional study on the shape of C180 and C240 fullerenes , 1995 .

[31]  Gustavo E. Scuseria,et al.  The equilibrium structures of giant fullerenes: faceted or spherical shape? An ab initio Hartree-Fock study of icosahedral C240 and C540 , 1995 .

[32]  Fred Wudl,et al.  Isolation of the Heterofullerene C59N as Its Dimer (C59N)2 , 1995, Science.

[33]  Jerzy Cioslowski,et al.  Electronic Structure Calculations on Fullerenes and Their Derivatives , 1995 .

[34]  I. Hertel,et al.  Single-photon ionization of higher fullerenes C76, C78 and C84. Determination of ionization potentials , 1995 .

[35]  D. Dixon,et al.  Prediction of the Fundamental Vibrational Frequencies for C60 by Local Density Functional Theory , 1995 .

[36]  Chan,et al.  Ab initio investigation of the vibrational and geometrical properties of solid C60 and K3C60. , 1995, Physical Review B (Condensed Matter).

[37]  L. H. Andersen,et al.  Laser photodetachment of C60− and C70− ions cooled in a storage ring , 1995 .

[38]  Peter R. Taylor Eric Bylaska,et al.  C20: Fullerene, Bowl or Ring? New Results from Coupled-Cluster Calculations , 1994, chem-ph/9409001.

[39]  M. Parrinello,et al.  Ab initio molecular dynamics of C70. Intramolecular vibrations and zero-point motion effects , 1994 .

[40]  Wang,et al.  Observation of higher-order infrared modes in solid C60 films. , 1993, Physical review. B, Condensed matter.

[41]  Kobayashi,et al.  Bonding and electronic properties of substituted fullerenes C58B2 and C58N2. , 1993, Physical review. B, Condensed matter.

[42]  Wang,et al.  First-principles study of vibrational modes in icosahedral C60. , 1993, Physical review. B, Condensed matter.

[43]  Eklund,et al.  Observation of higher-order Raman modes in C60 films. , 1993, Physical review. B, Condensed matter.

[44]  H. Schwarz,et al.  Ab initio MO calculations on the electronic and geometric structure of fullerene dications, C2+60, and the double-ionization energy of C60 , 1993 .

[45]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[46]  M. Pederson,et al.  Polarizabilities, charge states, and vibrational modes of isolated fullerene molecules. , 1992, Physical review. B, Condensed matter.

[47]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[48]  R. W. Lof,et al.  Band gap, excitons, and Coulomb interaction in solid C60. , 1992, Physical review letters.

[49]  Dresselhaus,et al.  Force-constant model for the vibrational modes in C60. , 1992, Physical review. B, Condensed matter.

[50]  M. Kappes,et al.  The Structure of C60: Orientational Disorder in the Low‐Temperature Modification of C60 , 1992 .

[51]  Menzel,et al.  Giant plasmon excitation in free C60 and C70 molecules studied by photoionization. , 1992, Physical review letters.

[52]  R. M. Yoo,et al.  Vacuum ultraviolet photoionization mass spectrometric study of C60 , 1992 .

[53]  Ingolf V. Hertel,et al.  Single-photon ionization of C60- and C70-fullerene with synchrotron radiation: determination of the ionization potential of C60 , 1992 .

[54]  D. Bethune,et al.  Bond Lengths in Free Molecules of Buckminsterfullerene, C60, from Gas-Phase Electron Diffraction , 1991, Science.

[55]  Kosmas Prassides,et al.  Crystal structure and bonding of ordered C60 , 1991, Nature.

[56]  R. Fleming,et al.  Relation of structure and superconducting transition temperatures in A3C60 , 1991, Nature.

[57]  G. Scuseria,et al.  THE EQUILIBRIUM GEOMETRY OF C60 AS PREDICTED BY SECOND-ORDER (MP2) PERTURBATION THEORY , 1991 .

[58]  Richard E. Smalley,et al.  Doping bucky: formation and properties of boron-doped buckminsterfullerene , 1991 .

[59]  D. Bethune,et al.  NMR determination of the bond lengths in C60 , 1991 .

[60]  G. Scuseria Ab initio theoretical predictions of the equilibrium geometries of C60, C60H60 and C60F60 , 1991 .

[61]  D. Bethune,et al.  C60 has icosahedral symmetry , 1990 .

[62]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[63]  Roberto Zanasi,et al.  Electric and magnetic properties of the aromatic sixty-carbon cage , 1990 .

[64]  David E. Weeks,et al.  Rotation–vibration spectra of icosahedral molecules. II. Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene , 1989 .

[65]  Raymond J. Abraham,et al.  Introduction to NMR Spectroscopy , 1988 .

[66]  M. Newton,et al.  Normal vibrational modes of buckminsterfullerene , 1988 .

[67]  F. Zerbetto,et al.  Quantum-chemical investigation of Franck-Condon and Jahn-Teller activity in the electronic spectra of Buckminsterfullerene , 1988 .

[68]  Sven J. Cyvin,et al.  Molecular vibrations of footballene , 1988 .

[69]  Thomas F. George,et al.  Vibrational motions of buckminsterfullerene , 1987 .

[70]  Hans Peter Lüthi,et al.  AB initio studies on the thermodynamic stability of the icosahedral C60 molecule “buckminsterfullerene” , 1987 .

[71]  A. Jameson,et al.  Gas-phase 13C chemical shifts in the zero-pressure limit: refinements to the absolute shielding scale for 13C , 1987 .

[72]  J. M. Schulman,et al.  On symmetrical clusters of carbon atoms: C60 , 1986 .

[73]  Robert C. Haddon,et al.  Electronic structure and bonding in icosahedral C60 , 1986 .

[74]  Peter Pulay,et al.  Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (QM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene , 1983 .

[75]  Graham Webb,et al.  Theory of NMR parameters , 1983 .

[76]  A. Szabo,et al.  Modern quantum chemistry , 1982 .

[77]  S. Wille,et al.  15N nuclear magnetic shielding scale from gas phase studies , 1980 .

[78]  D. Chong,et al.  Finite-field Calculations of Molecular Polarizabilities Using Field-Induced Polarization Functions: Second- and Third-order Perturbation Correlation Corrections to the Coupled Hartree-Fock Polarizability of H2O , 1979 .

[79]  S. Kukolich Proton magnetic shielding tensors from spin-rotation measurements on formaldehyde and ammonia , 1975 .

[80]  R. Ditchfield,et al.  Self-consistent perturbation theory of diamagnetism , 1974 .

[81]  Martin Karplus,et al.  Calculation of ground and excited state potential surfaces of conjugated molecules. I. Formulation and parametrization , 1972 .

[82]  L. A. Woodward Introduction to the theory of molecular vibrations and vibrational spectroscopy , 1972 .

[83]  John F. Stanton,et al.  Coupled-cluster calculations of nuclear magnetic resonance chemical shifts , 1967 .

[84]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[85]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[86]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[87]  S. Wiberley,et al.  Introduction to infrared and Raman spectroscopy , 1965 .

[88]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[89]  Norman Ramsey,et al.  Magnetic shielding of nuclei in molecules , 1950 .