Homoepitaxial Si-doped Gallium Oxide films by MOCVD with tunable electron concentrations and electrical properties

[1]  Chao Wu,et al.  Review of self-powered solar-blind photodetectors based on Ga2O3 , 2022, Materials Today Physics.

[2]  Haijun Lin,et al.  Oxygen annealing induced crystallization and cracking of pulsed laser deposited Ga2O3 films , 2022, Vacuum.

[3]  Y. Kumagai,et al.  Vertical β-Ga2O3 Schottky barrier diodes with trench staircase field plate , 2022, Applied Physics Express.

[4]  Hai Lu,et al.  1.95-kV Beveled-Mesa NiO/β-Ga2O3 Heterojunction Diode With 98.5% Conversion Efficiency and Over Million-Times Overvoltage Ruggedness , 2022, IEEE Transactions on Power Electronics.

[5]  H. Kuo,et al.  Growth and characterization of Si-doped Ga2O3 thin films by remote plasma atomic layer deposition: Toward UVC-LED application , 2022, Surface and Coatings Technology.

[6]  R. Fornari,et al.  Deep and shallow electronic states associated to doping, contamination and intrinsic defects in ε-Ga2O3 epilayers , 2022, Materials Science in Semiconductor Processing.

[7]  H. Miyamoto,et al.  Large-size (1.7 × 1.7 mm2) β-Ga2O3 field-plated trench MOS-type Schottky barrier diodes with 1.2 kV breakdown voltage and 109 high on/off current ratio , 2021, Applied Physics Express.

[8]  Y. Hao,et al.  Enhancing Breakdown Voltage of a Ga2O3 Schottky Barrier Diode with Small-Angle Beveled and High-k Oxide Field Plate , 2021, ECS Journal of Solid State Science and Technology.

[9]  Yan Hu,et al.  Growth and characterization of Ta-doped Ga2O3 films deposited by magnetron sputtering , 2021 .

[10]  Y. Liu,et al.  High‐Performance Harsh‐Environment‐Resistant GaOX Solar‐Blind Photodetectors via Defect and Doping Engineering , 2021, Advanced materials.

[11]  Zhengda Li,et al.  Stable Electron Concentration Si-doped β-Ga2O3 Films Homoepitaxial Growth by MOCVD , 2021, Coatings.

[12]  S. Krishnamoorthy,et al.  High Permittivity Dielectric Field-Plated Vertical (001) $\beta$-Ga$_2$O$_3$ Schottky Barrier Diode with Surface Breakdown Electric Field of 5.45 MV/cm and BFOM of $>$ 1 GW/cm$^{2}$ , 2021, 2105.04413.

[13]  S. Novak,et al.  MOCVD growth and characterization of conductive homoepitaxial Si-doped Ga2O3 , 2021 .

[14]  Weihua Tang,et al.  Oxygen vacancies modulating the photodetector performances in ε-Ga2O3 thin films , 2021, Journal of Materials Chemistry C.

[15]  Jae Kyeong Jeong,et al.  Mobility enhancement of indium-gallium oxide via oxygen diffusion induced by a metal catalytic layer , 2020 .

[16]  Z. Ye,et al.  Growth and characterization of Si-doped β-Ga2O3 films by pulsed laser deposition , 2020 .

[17]  G. Du,et al.  Stable Low Electron Concentration β-Ga2O3 Films Grown by Metal-Organic Chemical Vapor Deposition , 2020, ECS Journal of Solid State Science and Technology.

[18]  Renxu Jia,et al.  Progress of Ultra-Wide Bandgap Ga2O3 Semiconductor Materials in Power MOSFETs , 2020, IEEE Transactions on Power Electronics.

[19]  Shuwen Zheng,et al.  Effects of Si concentration on electronic structure and optical gap of Si-doped β-Ga2O3 , 2020 .

[20]  A.P. Liu,et al.  Self-Powered Solar-Blind Photodetectors Based on α / β Phase Junction of Ga2O3 , 2020, Physical Review Applied.

[21]  S. Long,et al.  High-Voltage ( $\overline{\text{2}}01$ ) $\beta$ -Ga2O3 Vertical Schottky Barrier Diode With Thermally-Oxidized Termination , 2020, IEEE Electron Device Letters.

[22]  Weihua Tang,et al.  Preliminary study for the effects of temperatures on optoelectrical properties of β-Ga2O3 thin films , 2019, Vacuum.

[23]  David-Wei Zhang,et al.  Precise control of the microstructural, optical, and electrical properties of ultrathin Ga2O3 film through nanomixing with few atom-thick SiO2 interlayer via plasma enhanced atomic layer deposition , 2018 .

[24]  Weihua Tang,et al.  Self-Powered Ultraviolet Photodetector with Superhigh Photoresponsivity (3.05 A/W) Based on the GaN/Sn:Ga2O3 pn Junction. , 2018, ACS nano.

[25]  Satish Kumar,et al.  Phonon mode contributions to thermal conductivity of pristine and defective β-Ga2O3. , 2018, Physical chemistry chemical physics : PCCP.

[26]  M. Higashiwaki,et al.  Modeling and interpretation of UV and blue luminescence intensity in β-Ga2O3 by silicon and nitrogen doping , 2018, Journal of Applied Physics.

[27]  Y. Lv,et al.  Surface morphology evolution and optoelectronic properties of heteroepitaxial Si-doped β-Ga 2 O 3 thin films grown by metal-organic chemical vapor deposition , 2018 .

[28]  E. Janzén,et al.  Electronic properties of the residual donor in unintentionally doped beta-Ga2O3 , 2016 .

[29]  Y. Kumagai,et al.  Current status of Ga2O3 power devices , 2016 .

[30]  S. Fujita,et al.  Conductivity control of Sn-doped α-Ga2O3 thin films grown on sapphire substrates , 2016 .

[31]  Roger H. French,et al.  Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition , 2016 .

[32]  Kentaro Kaneko,et al.  Electrical, optical, and magnetic properties of Sn doped α-Ga2O3 thin films , 2016 .

[33]  Andreas Fiedler,et al.  Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy , 2016, Journal of Materials Science.

[34]  Jin Ma,et al.  Effect of annealing on the properties of Ga2O3:Mg films prepared on α-Al2O3 (0001) by MOCVD , 2016 .

[35]  Z. Li,et al.  Characterization of homoepitaxial β-Ga2O3 films prepared by metal–organic chemical vapor deposition , 2014 .

[36]  Zbigniew Galazka,et al.  Structural properties of Si-doped β-Ga2O3 layers grown by MOVPE , 2014 .

[37]  Marius Grundmann,et al.  Determination of the mean and the homogeneous barrier height of Cu Schottky contacts on heteroepitaxial β‐Ga2O3 thin films grown by pulsed laser deposition , 2014 .

[38]  V. R. Reddy,et al.  Temperature-dependent Schottky barrier parameters of Ni/Au on n-type (001) β-Ga2O3 Schottky barrier diode , 2020 .

[39]  M. Albrecht,et al.  Epitaxial stabilization of pseudomorphic α-Ga2O3 on sapphire (0001) , 2014 .