Complementarity properties of Peirce-diagonalizable linear transformations on Euclidean Jordan algebras†

Peirce-diagonalizable linear transformations on a Euclidean Jordan algebra are of the form L(x)=A·x:=∑ a ij x ij , where A=[a ij ] is a real symmetric matrix and ∑ x ij is the Peirce decomposition of an element x in the algebra with respect to a Jordan frame. Examples of such transformations include Lyapunov transformations and quadratic representations on Euclidean Jordan algebras. Schur (or Hadamard) product of symmetric matrices provides another example. Motivated by a recent generalization of the Schur product theorem, we study general and complementarity properties of such transformations.

[1]  Peng Yi,et al.  A Continuation Method for Nonlinear Complementarity Problems over Symmetric Cones , 2010, SIAM J. Optim..

[2]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[3]  M. Gowda Some complementarity properties of Z and Lyapunov-like transformations on symmetric cones , 2010 .

[4]  M. Malik Some geometrical aspects of the cone linear complementarity problem , 2006 .

[5]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.

[6]  A. Berman,et al.  Completely Positive Matrices , 2003 .

[7]  Adam Korányi,et al.  Monotone functions on formally real Jordan algebras , 1984 .

[8]  M. Seetharama Gowda,et al.  More results on Schur complements in Euclidean Jordan algebras , 2012, J. Glob. Optim..

[9]  M. Seetharama Gowda,et al.  Some inequalities involving determinants, eigenvalues, and Schur complements in Euclidean Jordan algebras , 2011 .

[10]  R. Sznajder,et al.  Some P-properties for linear transformations on Euclidean Jordan algebras , 2004 .

[11]  M. Seetharama Gowda,et al.  Z-transformations on proper and symmetric cones , 2008, Math. Program..

[12]  M. S. Gowda,et al.  OnQ-matrices , 1990, Math. Program..

[13]  M. Seetharama Gowda,et al.  Some Global Uniqueness and Solvability Results for Linear Complementarity Problems Over Symmetric Cones , 2007, SIAM J. Optim..

[14]  Mathukumalli Vidyasagar,et al.  Cross-Positive Matrices , 1970 .

[15]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[16]  S. Karamardian An existence theorem for the complementarity problem , 1976 .

[17]  M. Seetharama Gowda,et al.  Automorphism Invariance of P- and GUS-Properties of Linear Transformations on Euclidean Jordan Algebras , 2006, Math. Oper. Res..

[18]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[19]  M. Seetharama Gowda,et al.  On the finiteness of the cone spectrum of certain linear transformations on Euclidean Jordan algebras , 2009 .