The Range 1 Query (R1Q) Problem

We define the range 1 query (R1Q) problem as follows. Given a d-dimensional (d ≥ 1) input bit matrix A, preprocess A so that for any given region \(\mathcal{R}\) of A, one can efficiently answer queries asking if \(\mathcal{R}\) contains a 1 or not. We consider both orthogonal and non-orthogonal shapes for \(\mathcal{R}\) including rectangles, axis-parallel right-triangles, certain types of polygons, and spheres. We provide space-efficient deterministic and randomized algorithms with constant query times (in constant dimensions) for solving the problem in the word RAM model. The space usage in bits is sublinear, linear, or near linear in the size of A, depending on the algorithm.

[1]  Moshe Lewenstein,et al.  Two-Dimensional Range Minimum Queries , 2007, CPM.

[2]  Kunihiko Sadakane,et al.  Compressed Suffix Trees with Full Functionality , 2007, Theory of Computing Systems.

[3]  R. González,et al.  PRACTICAL IMPLEMENTATION OF RANK AND SELECT QUERIES , 2005 .

[4]  Uzi Vishkin,et al.  Recursive Star-Tree Parallel Data Structure , 1993, SIAM J. Comput..

[5]  Mark H. Overmars Efficient Data Structures for Range Searching on a Grid , 1988, J. Algorithms.

[6]  Alexander Golynski Optimal lower bounds for rank and select indexes , 2007, Theor. Comput. Sci..

[7]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[8]  Steven Skiena,et al.  Lowest common ancestors in trees and directed acyclic graphs , 2005, J. Algorithms.

[9]  Pankaj K. Agarwal,et al.  Geometric Range Searching and Its Relatives , 2007 .

[10]  Andrew Chi-Chih Yao,et al.  Space-time tradeoff for answering range queries (Extended Abstract) , 1982, STOC '82.

[11]  Volker Heun,et al.  A New Succinct Representation of RMQ-Information and Improvements in the Enhanced Suffix Array , 2007, ESCAPE.

[12]  Graham Cormode,et al.  An Improved Data Stream Summary: The Count-Min Sketch and Its Applications , 2004, LATIN.

[13]  Volker Heun,et al.  Practical Entropy-Bounded Schemes for O(1)-Range Minimum Queries , 2008, Data Compression Conference (dcc 2008).

[14]  Micha Sharir,et al.  Semialgebraic Range Reporting and Emptiness Searching with Applications , 2009, SIAM J. Comput..

[15]  Johannes Fischer,et al.  Optimal Succinctness for Range Minimum Queries , 2008, LATIN.

[16]  S. Srinivasa Rao,et al.  On Space Efficient Two Dimensional Range Minimum Data Structures , 2011, Algorithmica.

[17]  Bradley C. Kuszmaul,et al.  The pochoir stencil compiler , 2011, SPAA '11.

[18]  Mikhail J. Atallah,et al.  Data structures for range minimum queries in multidimensional arrays , 2010, SODA '10.

[19]  Kunihiko Sadakane,et al.  Succinct data structures for flexible text retrieval systems , 2007, J. Discrete Algorithms.

[20]  Michael A. Bender,et al.  The LCA Problem Revisited , 2000, LATIN.

[21]  Graham Cormode,et al.  An improved data stream summary: the count-min sketch and its applications , 2004, J. Algorithms.

[22]  Luís M. S. Russo,et al.  Space-efficient data-analysis queries on grids , 2013, Theor. Comput. Sci..

[23]  Bernard Chazelle,et al.  Computing partial sums in multidimensional arrays , 1989, SCG '89.