M-component nonlinear evolution equations: multiple soliton solutions

Four M-component nonlinear evolution equations, namely the M-component Korteweg–de Vries (KdV) equation, the M-component Kadomtsev–Petviashvili (KP) equation, the M-component modified KdV (mKdV) equation and the M-component mKdV–KP equation, are examined for complete integrability. The study relies mainly on the simplified form of Hirota's direct method developed by Hereman and on computer symbolic computation. Multiple soliton solutions and multiple singular soliton solutions are derived for each vector equation.

[1]  Willy Hereman,et al.  Symbolic methods to construct exact solutions of nonlinear partial differential equations , 1997 .

[2]  Anjan Biswas,et al.  1-soliton solution of the K(m,n) equation with generalized evolution , 2008 .

[3]  Abdul-Majid Wazwaz,et al.  Solitons and singular solitons for the Gardner-KP equation , 2008, Appl. Math. Comput..

[4]  Mehdi Dehghan,et al.  A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions , 2008, Math. Comput. Simul..

[5]  Abdul-Majid Wazwaz,et al.  Multiple-front solutions for the Burgers equation and the coupled Burgers equations , 2007, Appl. Math. Comput..

[6]  Ryogo Hirota,et al.  Resonance of Solitons in One Dimension , 1983 .

[7]  Abdul-Majid Wazwaz,et al.  New solitons and kink solutions for the Gardner equation , 2007 .

[8]  Abdul-Majid Wazwaz,et al.  The Hirota's direct method for multiple-soliton solutions for three model equations of shallow water waves , 2008, Appl. Math. Comput..

[9]  Ryogo Hirota,et al.  A New Form of Bäcklund Transformations and Its Relation to the Inverse Scattering Problem , 1974 .

[10]  Abdul-Majid Wazwaz,et al.  Multiple-front solutions for the Burgers-Kadomtsev-Petviashvili equation , 2008, Appl. Math. Comput..

[11]  Jarmo Hietarinta,et al.  A Search for Bilinear Equations Passing Hirota''s Three-Soliton Condition , 1987 .

[12]  A. Biswas 1-Soliton solution of the generalized Camassa–Holm Kadomtsev–Petviashvili equation , 2009 .

[13]  A. Wazwaz The Hirota's direct method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Ito seventh-order equation , 2008, Appl. Math. Comput..

[14]  R. Hirota Discretization of coupled modified KdV equations , 2000 .

[15]  Masaaki Ito,et al.  An Extension of Nonlinear Evolution Equations of the K-dV (mK-dV) Type to Higher Orders , 1980 .

[16]  Abdul-Majid Wazwaz,et al.  Integrable (2+1)-dimensional and (3+1)-dimensional breaking soliton equations , 2010 .

[17]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[18]  Abdul-Majid Wazwaz,et al.  Multiple kink solutions and multiple singular kink solutions for (2+1)-dimensional nonlinear models generated by the Jaulent–Miodek hierarchy , 2009 .

[19]  Xing-Biao Hu,et al.  A vector potential KdV equation and vector Ito equation: soliton solutions, bilinear Bäcklund transformations and Lax pairs , 2003 .

[20]  W. Hereman,et al.  Symbolic software for soliton theory , 1995 .

[21]  Willy Hereman,et al.  Symbolic computation of conservation laws of nonlinear partial differential equations in multi-dimensions , 2006 .

[22]  Abdul-Majid Wazwaz,et al.  Single and multiple-soliton solutions for the (2+1)-dimensional KdV equation , 2008, Appl. Math. Comput..

[23]  A. Wazwaz Partial Differential Equations and Solitary Waves Theory , 2009 .

[24]  Abdul-Majid Wazwaz,et al.  Multiple-soliton solutions of two extended model equations for shallow water waves , 2008, Appl. Math. Comput..

[25]  Abdul-Majid Wazwaz,et al.  Multiple-soliton solutions for the Boussinesq equation , 2007, Appl. Math. Comput..

[26]  A. Wazwaz,et al.  Multiple-soliton solutions for coupled KdV and coupled KP systems , 2009 .

[27]  R. Hirota,et al.  N-Soliton Solutions of Model Equations for Shallow Water Waves , 1976 .

[28]  T. Yoneyama Interacting Korteweg-de Vries Equations and Attractive Soliton Interaction , 1984 .

[29]  Abdul-Majid Wazwaz,et al.  Multiple-soliton solutions for the Lax-Kadomtsev-Petviashvili (Lax-KP) equation , 2008, Appl. Math. Comput..

[30]  Salah M. El-Sayed,et al.  A numerical solution and an exact explicit solution of the NLS equation , 2006, Appl. Math. Comput..