Two-bit memory devices based on single-wall carbon nanotubes: demonstration and mechanism

Two-bit memory devices of SWNTs, based on the hysteresis effect, have been demonstrated for the first time. The pertinent memory behaviours seem to originate from the capacitive effect due to polarization of molecules, especially the surface-bound water molecules on SiO2 in close proximity to carbon nanotubes. Our investigations are intimately linked with ultrahigh-density memory applications, and possibly go a long way in broadening the memory applications of SWNTs, for example from nonvolatile to volatile cells.

[1]  Z. Gu,et al.  Mass-production of single-wall carbon nanotubes by arc discharge method 1 1 This work was supported , 1999 .

[2]  Michael S. Fuhrer,et al.  High-Mobility Nanotube Transistor Memory , 2002 .

[3]  M. Radosavljevic,et al.  Nonvolatile Molecular Memory Elements Based on Ambipolar Nanotube Field Effect Transistors , 2002 .

[4]  Jing Wang,et al.  Properties of a nanocrystalline barium titanate on silicon humidity sensor , 2003 .

[5]  A. Rinzler,et al.  An Integrated Logic Circuit Assembled on a Single Carbon Nanotube , 2006, Science.

[6]  Z. Gu,et al.  Thermally assisted tunnelling in ambipolar field-effect transistors based on fullerene peapod bundles , 2006, Nanotechnology.

[7]  J. Dai,et al.  Memory effects of carbon nanotubes as charge storage nodes for floating gate memory applications , 2006 .

[8]  Mahendra P. Verma Steam tables for pure water as an ActiveX component in Visual Basic 6.0 , 2003 .

[9]  E. Kan,et al.  Carbon nanotube-based nonvolatile memory with charge storage in metal nanocrystals , 2005 .

[10]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[11]  H. Postma,et al.  Carbon nanotube linear bearing nanoswitches. , 2006, Nano letters.

[12]  Phaedon Avouris,et al.  Molecular electronics with carbon nanotubes. , 2002, Accounts of chemical research.

[13]  R. J. Luyken,et al.  Concepts for hybrid CMOS-molecular non-volatile memories , 2003 .

[14]  Klaus Kern,et al.  Carbon nanotube memory devices of high charge storage stability , 2002 .

[15]  Ophir Vermesh,et al.  Hysteresis caused by water molecules in carbon nanotube field-effect transistors , 2003 .

[16]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[17]  W. Park,et al.  Aligned carbon nanotubes for nanoelectronics , 2004 .

[18]  P. Avouris,et al.  Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown , 2001, Science.

[19]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[20]  E. S. Snow,et al.  Chemical Detection with a Single-Walled Carbon Nanotube Capacitor , 2005, Science.

[21]  Gate-controlled rectifying behavior in C70@SWNTs networks , 2005, 2005 IEEE Conference on Electron Devices and Solid-State Circuits.

[22]  A. DeHon,et al.  Nonphotolithographic nanoscale memory density prospects , 2005, IEEE Transactions on Nanotechnology.

[23]  B. Cheong,et al.  Carbon-nanotube-based nonvolatile memory with oxide–nitride–oxide film and nanoscale channel , 2003 .

[24]  Laszlo B. Kish,et al.  TerraByte flash memory with carbon nanotubes , 2005 .

[25]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[26]  P. Bandaru,et al.  Carbon nanotube based nonvolatile memory , 2005 .

[27]  Device modeling of long-channel nanotube electro-optical emitter , 2004, cond-mat/0411537.

[28]  P. Ajayan,et al.  Quantitative analysis of hysteresis in carbon nanotube field-effect devices , 2006 .