A FSDT—MITC Piezoelectric Shell Finite Element with Ferroelectric Non-linearity

A shell finite element based on the Reissner/Mindlin first-order shear deformation theory and integrating a bi-dimensional phenomenological ferroelectric constitutive law for domain switching effects is proposed. An electric switching function is considered to indicate the onset of domain switching. Only one internal variable (the remanent polarization) is used in the model. An implicit integration technique based on the return-mapping algorithm is adopted. The shell element is implemented into the commercial finite element code Abaqus ® via the subroutine user element. Some linear (piezoelectric) and non-linear (ferroelectric) tests are considered to validate first, the element formulation and second, the implementation of the bi-dimensional ferroelectric model. It is shown by studying a complex example (the spiral actuator) that the Reissner/Mindlin kinematic hypothesis (no variation of the displacement across the thickness or no thickness variation) is not sufficient for some electromechanical applications for which the d33 effect is of major importance.

[1]  Sven Klinkel,et al.  A mixed shell formulation accounting for thickness strains and finite strain 3d material models , 2008 .

[2]  R. Carr,et al.  Finite element analysis of PZT tube scanner motion for scanning tunnelling microscopy , 1988 .

[3]  Ayech Benjeddou,et al.  On analytical and finite element modelling of piezoelectric extension and shear bimorphs , 2006 .

[4]  Miguel Luiz Bucalem,et al.  Locking-free piezoelectric MITC shell elements , 2003 .

[5]  Long-Qing Chen,et al.  Effect of grain orientation and grain size on ferroelectric domain switching and evolution: Phase field simulations , 2007 .

[6]  Michel Bernadou,et al.  Modelization and numerical approximation of piezoelectric thin shells: Part II: Approximation by finite element methods and numerical experiments , 2003 .

[7]  Marc Kamlah,et al.  Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior , 2001 .

[8]  Sven Klinkel,et al.  A piezoelectric solid shell element based on a mixed variational formulation for geometrically linear and nonlinear applications , 2008 .

[9]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[10]  T. Ikeda Fundamentals of piezoelectricity , 1990 .

[11]  Gérard A. Maugin,et al.  Thermodynamical formulation for coupled electromechanical hysteresis effects—II. Poling of ceramics , 1988 .

[12]  Gérard A. Maugin,et al.  Thermodynamical formulation for coupled electromechanical hysteresis effects—I. Basic equations , 1988 .

[13]  Marc Kamlah,et al.  Phenomenological modeling of the non-linear electro-mechanical coupling in ferroelectrics , 1999 .

[14]  Jimei Ma,et al.  A piezoelectric tube with a double-layer configuration , 2004 .

[15]  Ahmad Safari,et al.  Processing of advanced electroceramic components by fused deposition technique , 2001 .

[16]  Ayech Benjeddou,et al.  Advances in piezoelectric finite element modeling of adaptive structural elements: a survey , 2000 .

[17]  Qiao Sun,et al.  Three-dimensional displacement analysis of a piezoelectric tube scanner through finite element simulations of a tube assembly , 2006 .

[18]  Gérard A. Maugin,et al.  Thermodynamical formulation for coupled electromechanical hysteresis effects. III: Parameter identification , 1989 .

[19]  G. Dhatt,et al.  Modélisation des structures par éléments finis , 1990 .

[20]  Theo Fett,et al.  Nonsymmetry in the deformation behaviour of PZT , 1998 .

[21]  Michel Bernadou,et al.  Modelization and numerical approximation of piezoelectric thin shells. Part I: The continuous problems , 2003 .

[22]  A. Safari,et al.  HIGH-DISPLACEMENT SPIRAL PIEZOELECTRIC ACTUATORS , 1999 .

[23]  Tarak Ben Zineb,et al.  Constitutive Law for Ferroelastic and Ferroelectric Piezoceramics , 2005 .

[24]  Mohammed A. Al-Ajmi,et al.  Damage indication in smart structures using modal effective electromechanical coupling coefficients , 2008 .

[25]  Tarak Ben Zineb,et al.  Finite element analysis of a multilayer piezoelectric actuator taking into account the ferroelectric and ferroelastic behaviors , 2006 .

[26]  Sven Klinkel,et al.  A phenomenological constitutive model for ferroelastic and ferroelectric hysteresis effects in ferroelectric ceramics , 2006 .

[27]  C. J. Chen,et al.  Electromechanical deflections of piezoelectric tubes with quartered electrodes , 1992 .

[28]  Chad M. Landis,et al.  A phenomenological multi-axial constitutive law for switching in polycrystalline ferroelectric ceramics , 2002 .

[29]  M. L. Bucalém,et al.  A family of piezoelectric MITC plate elements , 2005 .

[30]  A. Safari,et al.  An Overview of Rapidly Prototyped Piezoelectric Actuators and Grain-Oriented Ceramics , 2002 .

[31]  Richard H. Macneal,et al.  A simple quadrilateral shell element , 1978 .

[32]  K. Y. Sze,et al.  A hybrid stress ANS solid-shell element and its generalization for smart structure modelling. Part II?smart structure modelling , 2000 .

[33]  Gérard A. Maugin,et al.  Thermodynamical formulation for coupled electromechanical hysteresis effects—IV. Combined electromechanical loading , 1989 .