Evenness mediates the global relationship between forest productivity and richness

1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale.

Javier G. P. Gamarra | N. Picard | F. Rovero | A. Marshall | Jean‐François Bastin | T. Crowther | F. Kraxner | Du Tran | B. Enquist | O. Phillips | E. Broadbent | P. Brancalion | G. Nabuurs | A. Shvidenko | T. Killeen | D. Gianelle | Y. Malhi | D. Coomes | S. Lewis | T. Feldpausch | J. Barroso | M. Bastian | F. Bongers | C. Clark | L. Ferreira | D. Harris | Emanuel H. Martin | A. Araujo-Murakami | Alexander Parada-Gutierrez | L. Poorter | J. Poulsen | D. Sheil | J. Silva-Espejo | M. Silveira | T. Baker | Yude Pan | Mait Lang | E. Cienciala | M. Köhl | R. Chazdon | S. Vieira | H. Verbeeck | J. Herbohn | D. Neill | N. Pitman | L. Arroyo | O. Bánki | C. Mendoza | F. Valladares | G. D. Werner | G. Alberti | F. Wittmann | B. Swanepoel | P. Boeckx | L. Finér | M. Fischer | D. Kennard | T. Eyre | N. Imai | K. Kitayama | V. Avitabile | T. Zawila-Niedzwiecki | C. Antón-Fernández | V. Šebeň | K. von Gadow | Han Y. H. Chen | B. Schmid | A. Hemp | D. Maynard | B. Sonké | A. Vibrans | P. Mundhenk | S. Wiser | E. Kearsley | B. DeVries | J. Oleksyn | J. Svenning | A. Paquette | D. Schepaschenko | Zhi-Xin Zhu | M. Piedade | J. Schöngart | N. Targhetta | M. Rodeghiero | P. Schall | C. Ammer | K. Stereńczak | H. Pretzsch | P. Saikia | M. L. Khan | H. Bruelheide | M. Scherer‐Lorenzen | T. Jucker | L. Frizzera | D. Piotto | R. Bałazy | F. Bussotti | S. de-Miguel | J. Gamarra | C. Merow | D. Kenfack | H. ter Steege | A. Mendoza | B. Marimon | R. Brienen | R. Zagt | B. Jaroszewicz | F. van der Plas | P. Niklaus | O. Bouriaud | P. Sist | Eric B. Searle | Jingjing Liang | Mo Zhou | B. Hérault | H. Glick | G. Hengeveld | S. Pfautsch | H. Viana | Nadja Tchebakova | James Watson | Huicui Lu | E. Parfenova | Susanne Brandl | V. Neldner | M. Ngugi | A. Jagodziński | P. Peri | P. Álvarez-Loayza | R. Valencia | V. Wortel | J. Meave | E. Rutishauser | P. Birnbaum | M. Svoboda | A. Roopsind | Raquel S. Thomas | Mathieu Decuyper | Eric Marcon | N. Parthasarathy | B. H. Marimon‐Junior | T. Ibanez | C. Fletcher | R. César | A. L. de Gasper | K. Kartawinata | A. Poulsen | P. Umunay | S. Dayanandan | M. G. Nava-Miranda | G. Derroire | James Singh | G. Keppel | L. Alves | V. Usoltsev | F. Slik | Aurélie Dourdain | M. Parren | S. Rolim | H. Korjus | C. Hui | Chunyu Zhang | Xiu-hai Zhao | S. A. Mukul | T. Fayle | D. Laarmann | P. Ontikov | O. Martynenko | A. Hillers | A. F. Souza | David B. Clark | G. Colletta | V. Karminov | Christian Salas‐Eljatib | M. Abegg | L. Birigazzi | J. Cumming | I. C. Zo-Bi | A. Hector | A. B. Fandohan | Hyunkook Cho | Chelsea Chisholm | Minjee Park | S. Hart | E. Tikhonova | R. Nevenić | Hua‐Feng Wang | Álvarez-Dávila Esteban | V. Moreno | P. Reich | Goran Češljar | P. Crim | I. Djordjevic | C. A. Joly | Omar Melo-Cruz | R. Bitariho | J. Serra-Diaz | J. Corral-Rivas | Brian Salvin Maitner | I. Polo | Edgar Ortiz-Malavasi | N. Lukina | Amaral Iêda | Zorayda Restrepo-Correa | Michael E. Van Nuland | S. Kepfer‐Rojas | Iris Hordijk | B. V. Alvarado | Mo Lidong | C. Y. Adou Yao | Angelica M. Almeyda Zambrano | Gerardo A. Aymard C | Roberto Cazzolla Gatti | Fernando Cornejo Valverde | Engone Obiang Nestor Laurier | Eurídice N. Honorio Coronado | Il Bin Jung | Vivian Johanssen | Kim Hyun Seok | Miscicki Stanislaw | Freddy Ramirez Arevalo | Rodolfo Vasquez Martinez | Philip Mundhenk | Do Van Tran | R. Nevenic | C. Joly | Fons van der Plas | Jens‐Christian Svenning | Klaus von Gadow | I. Djordjević | G. Aymard C | Edgar Ortiz‐Malavasi | Omar Melo‐Cruz | Alexander Parada‐Gutierrez | Zorayda Restrepo‐Correa

[1]  Lin Jiang,et al.  Mechanistic links between biodiversity effects on ecosystem functioning and stability in a multi‐site grassland experiment , 2021, Journal of Ecology.

[2]  C. Patrick Doncaster,et al.  Implications of scale dependence for cross-study syntheses of biodiversity differences. , 2020, Ecology letters.

[3]  F. Bongers,et al.  Interpreting forest diversity-productivity relationships: volume values, disturbance histories and alternative inferences , 2020, Forest Ecosystems.

[4]  C. Graham,et al.  The productivity-biodiversity relationship varies across diversity dimensions , 2019, Nature Communications.

[5]  P. Reich,et al.  When Do Ecosystem Services Depend on Rare Species? , 2019, Trends in ecology & evolution.

[6]  B. Deák,et al.  Both mass ratio effects and community diversity drive biomass production in a grassland experiment , 2019, Scientific Reports.

[7]  Jingjing Liang,et al.  Parameterization of biodiversity–productivity relationship and its scale dependency using georeferenced tree‐level data , 2019, Journal of Ecology.

[8]  Duarte S. Viana,et al.  Spatial scale modulates the inference of metacommunity assembly processes. , 2019, Ecology.

[9]  P. Ciais,et al.  The global forest age dataset and its uncertainties (GFADv1.1) , 2019 .

[10]  Arshad Ali,et al.  Climate and soils determine aboveground biomass indirectly via species diversity and stand structural complexity in tropical forests , 2019, Forest Ecology and Management.

[11]  Anping Chen,et al.  Impacts of climate on the biodiversity-productivity relationship in natural forests , 2018, Nature Communications.

[12]  B. R. Ramesh,et al.  Pan‐tropical prediction of forest structure from the largest trees , 2018, Global Ecology and Biogeography.

[13]  J. Koricheva,et al.  A million and more trees for science , 2018, Nature Ecology & Evolution.

[14]  H. D. Boeck,et al.  Effects of species evenness can be derived from species richness – ecosystem functioning relationships , 2018 .

[15]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[16]  J. Chave,et al.  biomass: an r package for estimating above‐ground biomass and its uncertainty in tropical forests , 2017 .

[17]  Patrick L. Thompson,et al.  Linking the influence and dependence of people on biodiversity across scales , 2017, Nature.

[18]  B. Schmid,et al.  Can niche plasticity promote biodiversity-productivity relationships through increased complementarity? , 2017, Ecology.

[19]  J.G.B. Leenaars,et al.  WoSIS: providing standardised soil profile data for the world , 2016 .

[20]  Filippo Bussotti,et al.  Positive biodiversity-productivity relationship predominant in global forests , 2016, Science.

[21]  Susan G. Letcher,et al.  Biomass resilience of Neotropical secondary forests , 2016, Nature.

[22]  Ellen I. Damschen,et al.  Integrative modelling reveals mechanisms linking productivity and plant species richness , 2016, Nature.

[23]  Marko Sarstedt,et al.  How collinearity affects mixture regression results , 2015 .

[24]  Anke Jentsch,et al.  Worldwide evidence of a unimodal relationship between productivity and plant species richness , 2015, Science.

[25]  P. Ehrlich,et al.  Accelerated modern human–induced species losses: Entering the sixth mass extinction , 2015, Science Advances.

[26]  Michael J. Aspinwall,et al.  BAAD: a Biomass And Allometry Database for woody plants , 2015 .

[27]  B. Nelson,et al.  Improved allometric models to estimate the aboveground biomass of tropical trees , 2014, Global change biology.

[28]  Mao Ning Tuanmu,et al.  A global 1‐km consensus land‐cover product for biodiversity and ecosystem modelling , 2014 .

[29]  F. Rovero,et al.  Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics , 2013 .

[30]  C. Justice,et al.  High-Resolution Global Maps of 21st-Century Forest Cover Change , 2013, Science.

[31]  J. Terborgh,et al.  Hyperdominance in the Amazonian Tree Flora , 2013, Science.

[32]  Philippe Santenoise,et al.  GlobAllomeTree: international platform for tree allometric equations to support volume, biomass and carbon assessment , 2013 .

[33]  Christophe Ley,et al.  Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median , 2013 .

[34]  Zhenyuan Lu,et al.  The taxonomic name resolution service: an online tool for automated standardization of plant names , 2013, BMC Bioinformatics.

[35]  Shurong Zhou,et al.  The Relationship between Species Richness and Evenness in Plant Communities along a Successional Gradient: A Study from Sub-Alpine Meadows of the Eastern Qinghai-Tibetan Plateau, China , 2012, PloS one.

[36]  H. Tuomisto An updated consumer’s guide to evenness and related indices , 2012 .

[37]  S. Passy,et al.  The relationship between species richness and evenness: a meta-analysis of studies across aquatic ecosystems , 2012, Oecologia.

[38]  G. Daily,et al.  Biodiversity loss and its impact on humanity , 2012, Nature.

[39]  P. Reich,et al.  Forest productivity increases with evenness, species richness and trait variation: a global meta‐analysis , 2012 .

[40]  Nadejda A. Soudzilovskaia,et al.  Global to community scale differences in the prevalence of convergent over divergent leaf trait distributions in plant assemblages , 2011 .

[41]  Andrew Gonzalez,et al.  The functional role of producer diversity in ecosystems. , 2011, American journal of botany.

[42]  L. Jost The Relation between Evenness and Diversity , 2010 .

[43]  B. Wilsey,et al.  Biodiversity, productivity and the temporal stability of productivity: patterns and processes. , 2009, Ecology letters.

[44]  J. Chave,et al.  Towards a Worldwide Wood Economics Spectrum 2 . L E a D I N G D I M E N S I O N S I N W O O D F U N C T I O N , 2022 .

[45]  Christopher N. Johnson,et al.  Species Richness and Evenness in Australian Birds , 2008, The American Naturalist.

[46]  Ian T. Carroll,et al.  Impacts of plant diversity on biomass production increase through time because of species complementarity , 2007, Proceedings of the National Academy of Sciences.

[47]  Marti J. Anderson,et al.  Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. , 2007, Ecology letters.

[48]  O. Huguenin-Elie,et al.  Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites , 2007 .

[49]  Matthias Peichl,et al.  Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests , 2006 .

[50]  P. Balvanera,et al.  Quantifying the evidence for biodiversity effects on ecosystem functioning and services. , 2006, Ecology letters.

[51]  Ulrike Groemping,et al.  Relative Importance for Linear Regression in R: The Package relaimpo , 2006 .

[52]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[53]  Maohua Ma Species richness vs evenness: independent relationship and different responses to edaphic factors , 2005 .

[54]  Mark W. Schwartz,et al.  Rare Species and Ecosystem Functioning , 2005 .

[55]  F. Chapin,et al.  EFFECTS OF BIODIVERSITY ON ECOSYSTEM FUNCTIONING: A CONSENSUS OF CURRENT KNOWLEDGE , 2005 .

[56]  F. Berendse,et al.  Diversity-productivity relationships: initial effects, long-term patterns, and underlying mechanisms. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Richard Condit,et al.  Error propagation and scaling for tropical forest biomass estimates. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[58]  M. Loreau,et al.  Biodiversity as spatial insurance in heterogeneous landscapes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[59]  R. Birdsey,et al.  National-Scale Biomass Estimators for United States Tree Species , 2003, Forest Science.

[60]  B. Schmid The species richness–productivity controversy , 2002 .

[61]  G. Powell,et al.  Terrestrial Ecoregions of the World: A New Map of Life on Earth , 2001 .

[62]  G. Stirling,et al.  Empirical Relationships between Species Richness, Evenness, and Proportional Diversity , 2001, The American Naturalist.

[63]  Michel Loreau,et al.  Partitioning selection and complementarity in biodiversity experiments , 2001, Nature.

[64]  Debra P. C. Peters,et al.  Intensity of intra‐ and interspecific competition in coexisting shortgrass species , 2001 .

[65]  Mark V. Lomolino,et al.  Ecology’s most general, yet protean 1 pattern: the species‐area relationship , 2000 .

[66]  H. Gitay,et al.  The effect of spatial scale on evenness , 1999 .

[67]  M. Loreau,et al.  Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[68]  J. P. Grime,et al.  Benefits of plant diversity to ecosystems: immediate, filter and founder effects , 1998 .

[69]  M. Loreau,et al.  Biodiversity and ecosystem functioning: a mechanistic model. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[70]  L. Cook,et al.  Evenness and species number in some moth populations , 1996 .

[71]  William G. Lee,et al.  Species redundancy: a redundant concept? , 1996 .

[72]  P. Harvey,et al.  Evenness of abundance in bird communities , 1994 .

[73]  Hal Caswell,et al.  Community Structure: A Neutral Model Analysis , 1976 .

[74]  Robert K. Peet,et al.  The Measurement of Species Diversity , 1974 .

[75]  M. Hill Diversity and Evenness: A Unifying Notation and Its Consequences , 1973 .

[76]  D. Janzen Herbivores and the Number of Tree Species in Tropical Forests , 1970, The American Naturalist.

[77]  E. Tramer,et al.  Bird Species Diversity: Components of Shannon's Formula , 1969 .

[78]  Verzekeren Naar Sparen,et al.  Cambridge , 1969, Humphrey Burton: In My Own Time.

[79]  H. Gleason,et al.  On the Relation Between Species and Area , 1922 .

[80]  E. D. Carvalho Ribeiro,et al.  World Soil Information Service (WoSIS) - Towards the standardization and harmonization of world soil data : Procedures Manual 2018 , 2018 .

[81]  J. A. Bennett,et al.  Fraser et al 2015 Worldwide evidence of a unimodal relationship between productivity and plant species richness Science , 2015 .

[82]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[83]  Inazio Martinez de Arano,et al.  Global Change , 2012 .

[84]  D. Manier,et al.  Large herbivores influence the composition and diversity of shrub-steppe communities in the Rocky Mountains, USA , 2005, Oecologia.

[85]  United Kingdom,et al.  GLOBAL FOREST RESOURCES ASSESSMENT 2005 , 2005 .

[86]  F. Martin,et al.  Terrestrial Activity, Abundance and Species Richness of Amphibians in Managed Forests in South Carolina , 2000 .

[87]  Jacques Roy,et al.  How important are species richness, species evenness and interspecific differences to productivity? A mathematical model , 2000 .

[88]  J. Connell On the role of the natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees , 1971 .