Realistic threshold policy with hysteresis to control predator–prey continuous dynamics

This paper introduces a threshold policy with hysteresis (TPH) for the control of one-predator one-prey models. The models studied are the Lotka–Volterra and Rosenzweig–MacArthur two species density-dependent predator–prey models and the Arditi–Ginzburg nondimensional ratio-dependent model. The proposed policy (TPH) changes the dynamics of the system in such a way that a bounded oscillation is achieved confined to a region that does not allow extinction of either species. The policy can be designed by a suitable choice of so called virtual equilibrium points in a simple and intuitive manner.

[1]  R. May,et al.  Stability and Complexity in Model Ecosystems , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  A. C. Soudack,et al.  Constant-rate stocking of predator-prey systems , 1981 .

[3]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[4]  Munther A. Dahleh,et al.  Global stability of relay feedback systems , 2001, IEEE Trans. Autom. Control..

[5]  S. Hsu,et al.  Global analysis of the Michaelis–Menten-type ratio-dependent predator-prey system , 2001, Journal of mathematical biology.

[6]  M. Krasnosel’skiǐ,et al.  Systems with Hysteresis , 1989 .

[7]  A. Visintin Differential models of hysteresis , 1994 .

[8]  H. Resit Akçakaya,et al.  Consequences of Ratio‐Dependent Predation for Steady‐State Properties of Ecosystems , 1992 .

[9]  R. Arditi,et al.  Variation in Plankton Densities Among Lakes: A Case for Ratio-Dependent Predation Models , 1991, The American Naturalist.

[10]  Dongmei Xiao,et al.  Global dynamics of a ratio-dependent predator-prey system , 2001, Journal of mathematical biology.

[11]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[12]  Martin Brokate,et al.  Asymptotically Stable Oscillations in Systems with Hysteresis Nonlinearities , 1998 .

[13]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[14]  Eugenius Kaszkurewicz,et al.  Stabilizing control of ratio-dependent predator–prey models☆ , 2006 .

[15]  R. Arditi,et al.  Coupling in predator-prey dynamics: Ratio-Dependence , 1989 .

[16]  S. E. Khaikin,et al.  Theory of Oscillators , 1966 .

[17]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[18]  A. C. Soudack,et al.  Coexistence properties of some predator-prey systems under constant rate harvesting and stocking , 1982 .

[19]  Eugenius Kaszkurewicz,et al.  On-off policy and hysteresis on-off policy control of the herbivore-vegetation dynamics in a semi-arid grazing system , 2006 .

[20]  Liu Hsu,et al.  Achieving global convergence to an equilibrium population in predator-prey systems by the use of a discontinuous harvesting policy , 2000 .

[21]  L. Zaccarian,et al.  Generalized Constructive Model of Hysteresis , 2006, IEEE Transactions on Magnetics.

[22]  A. Pokrovskii,et al.  Asymptotic stability of continuum sets of periodic solutions to systems with hysteresis , 2006 .

[23]  Thomas W. Schoener,et al.  STABILITY AND COMPLEXITY IN MODEL ECOSYSTEMS , 1974 .

[24]  Roger Arditi,et al.  Ratio-Dependent Predation: An Abstraction That Works , 1995 .

[25]  R Arditi,et al.  Parametric analysis of the ratio-dependent predator–prey model , 2001, Journal of mathematical biology.

[26]  D. Boukal,et al.  Lyapunov functions for Lotka–Volterra predator–prey models with optimal foraging behavior , 1999 .

[27]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[28]  Tryphon T. Georgiou,et al.  Dynamics of relay relaxation oscillators , 2001, IEEE Trans. Autom. Control..

[29]  V. Křivan,et al.  A Lyapunov function for piecewise-independent differential equations: stability of the ideal free distribution in two patch environments , 2007, Journal of mathematical biology.

[30]  Eugenius Kaszkurewicz,et al.  Threshold policies control for predator-prey systems using a control Liapunov function approach. , 2005, Theoretical population biology.

[31]  Ubirajara F. Moreno,et al.  Analysis of piecewise-linear oscillators with hysteresis , 2003 .