A regular operator on a partial inner product space V is an operator which, together with its adjoint, is defined on the whole space V. The set of all regular operators on V is a *-algebra, isomorphic to a *-algebra of unbounded operators on the dense domain V=#=. Their spectral properties are investigated; in particular, criteria are given for a symmetric regular operator to be essentially self-adjoint and for its self-adjoint closure to have regular spectral projections. Some applications , are discussed, in quantum mechanics and in the representation theory of Lie groups or algebras. RESUME. Un operateur regulier dans un espace a produit interne partiel Vest un operateur defini, ainsi que son adjoint, sur l’espace V tout entier. L’ensemble des operateurs reguliers sur Vest une *-algebre, isomorphe a une *-algèbre d’operateurs non bornes sur Ie domaine dense V*. On etudie leurs proprietes spectrales ; en particulier, on donne des criteres pour qu’un operateur regulier symetrique soit essentiellement auto-adj oint et pour que les projecteurs spectraux de sa fermeture autoadj ointe soient eux-memes des operateurs reguliers. Ces notions sont appliquees en mecanique quantique et dans la theorie des representations de groupes et algebres de Lie.
[1]
R. Bolstein,et al.
Expansions in eigenfunctions of selfadjoint operators
,
1968
.
[2]
Krzysztof Maurin,et al.
General eigenfunction expansions and unitary representations of topological groups
,
1968
.
[3]
Decomposition of Families of Unbounded Operators
,
1976
.
[4]
G. G. Stokes.
"J."
,
1890,
The New Yale Book of Quotations.
[5]
A. Bohm,et al.
The rigged Hilbert space and quantum mechanics
,
1978
.
[6]
A. Grothendieck,et al.
Produits Tensoriels Topologiques Et Espaces Nucleaires
,
1966
.
[7]
G. Lassner,et al.
RIGGED HILBERT SPACES AND TOPOLOGIES ON OPERATOR ALGEBRAS
,
1979
.