A convergence analysis of generalized hill climbing algorithms

Generalized hill climbing (GHC) algorithms provide a well-defined framework for describing the performance of local search algorithms for discrete optimization problems. Necessary and sufficient convergence conditions for GHC algorithms are presented. These convergence conditions are derived using a new iteration classification scheme for GHC algorithms. The implications of the necessary and the sufficient convergence conditions fur GHC algorithms with respect to existing convergence theory for simulated annealing are also discussed.

[1]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[2]  Erhan Çinlar,et al.  Introduction to stochastic processes , 1974 .

[3]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[4]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[5]  Sheldon Howard Jacobson,et al.  DISCRETE MANUFACTURING PROCESS DESIGN OPTIMIZATION USING COMPUTER SIMULATION AND GENERALIZED HILL CLIMBING ALGORITHMS , 1998 .

[6]  A. Federgruen,et al.  Simulated annealing methods with general acceptance probabilities , 1987, Journal of Applied Probability.

[7]  Sheldon H. Jacobson,et al.  On the convergence of generalized hill climbing algorithms , 2002, Discret. Appl. Math..

[8]  Ashok Kumar,et al.  Computational analysis of a flexible assembly system design problem , 2000, Eur. J. Oper. Res..

[9]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[10]  John S. Maybee,et al.  Deterministic inverse zero-patterns , 2001, Discret. Appl. Math..

[11]  Vassilis Zissimopoulos,et al.  On the Classification of NP-complete Problems in Terms of Their Correlation Coefficient , 2000, Discret. Appl. Math..

[12]  P. R. Kumar,et al.  Simulated annealing type markov chains and their order balance equations , 1989 .

[13]  Gerhard W. Dueck,et al.  Threshold accepting: a general purpose optimization algorithm appearing superior to simulated anneal , 1990 .

[14]  Milan S. Matijevic,et al.  A robust Smith predictor modified by internal models for integrating process with dead time , 2001, IEEE Trans. Autom. Control..