Unified Analysis of Periodization-Based Sampling Methods for Matérn Covariances

The periodization of a stationary Gaussian random field on a sufficiently large torus comprising the spatial domain of interest is the basis of various efficient computational methods, such as the classical circulant embedding technique using the fast Fourier transform for generating samples on uniform grids. For the family of Matern covariances with smoothness index $\nu$ and correlation length $\lambda$, we analyse the nonsmooth periodization (corresponding to classical circulant embedding) and an alternative procedure using a smooth truncation of the covariance function. We solve two open problems: the first concerning the $\nu$-dependent asymptotic decay of eigenvalues of the resulting circulant in the nonsmooth case, the second concerning the required size in terms of $\nu$, $\lambda$ of the torus when using a smooth periodization. In doing this we arrive at a complete characterisation of the performance of these two approaches. Both our theoretical estimates and the numerical tests provided here show substantial advantages of smooth truncation.

[1]  James A. Nichols,et al.  Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients , 2015, Numerische Mathematik.

[2]  Michael L. Stein,et al.  Fast and Exact Simulation of Fractional Brownian Surfaces , 2002 .

[3]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[4]  Albert Cohen,et al.  Representations of Gaussian Random Fields and Approximation of Elliptic PDEs with Lognormal Coefficients , 2016, Journal of Fourier Analysis and Applications.

[5]  Frances Y. Kuo,et al.  Fast random field generation with H-matrices , 2017, Numerische Mathematik.

[6]  C. R. Dietrich,et al.  Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..

[7]  Frances Y. Kuo,et al.  Analysis of Circulant Embedding Methods for Sampling Stationary Random Fields , 2017, SIAM J. Numer. Anal..

[8]  Patrice Abry,et al.  Smoothing Windows for the Synthesis of Gaussian Stationary Random Fields Using Circulant Matrix Embedding , 2014 .

[9]  Elisabeth Ullmann,et al.  Fast sampling of parameterised Gaussian random fields , 2018, Computer Methods in Applied Mechanics and Engineering.

[10]  Frances Y. Kuo,et al.  Circulant embedding with QMC: analysis for elliptic PDE with lognormal coefficients , 2018, Numerische Mathematik.

[11]  Frances Y. Kuo,et al.  Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications , 2011, J. Comput. Phys..

[12]  H. Helgason,et al.  Convex Optimization and Feasible Circulant Matrix Embeddings in Synthesis of Stationary Gaussian Fields , 2016 .

[13]  Albert Cohen,et al.  Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients , 2015, 1509.07050.

[14]  Helmut Harbrecht,et al.  Efficient approximation of random fields for numerical applications , 2015, Numer. Linear Algebra Appl..

[15]  T. Gneiting,et al.  Fast and Exact Simulation of Large Gaussian Lattice Systems in ℝ2: Exploring the Limits , 2006 .

[16]  A. Wood,et al.  Simulation of Stationary Gaussian Processes in [0, 1] d , 1994 .