Input selection in data-driven fuzzy modeling

An iterative backward selection method for determination of relevant input variables in data-driven fuzzy modeling is presented. The method utilizes parameters of the Takagi-Sugeno model as a factor to determine the significance of input variables. As a result, it is less computationally intensive than most of the existing methods for input variable selection.

[1]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  Bart Kosko,et al.  Fuzzy Engineering , 1996 .

[3]  Stephen L. Chiu,et al.  Selecting Input Variables for Fuzzy Models , 1996, J. Intell. Fuzzy Syst..

[4]  Jacek M. Zurada,et al.  Data-driven design of fuzzy system with relational input partition , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[5]  Derek A. Linkens,et al.  Input selection and partition validation for fuzzy modelling using neural network , 1999, Fuzzy Sets Syst..

[6]  Yinghua Lin,et al.  Input variable identification - fuzzy curves and fuzzy surfaces , 1996, Fuzzy Sets Syst..

[7]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[8]  Kazuo Tanaka,et al.  Modeling and control of carbon monoxide concentration using a neuro-fuzzy technique , 1995, IEEE Trans. Fuzzy Syst..

[9]  Michio Sugeno,et al.  A fuzzy-logic-based approach to qualitative modeling , 1993, IEEE Trans. Fuzzy Syst..

[10]  Peter Raeth,et al.  Book review: Fuzzy Engineering by Bart Kosko (Prentice Hall, 1997) , 1998, SGAR.

[11]  J.-S.R. Jang,et al.  Input selection for ANFIS learning , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[12]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .