Food chain chaos due to junction-fold point.

Consideration is given to a basic food chain model satisfying the trophic time diversification hypothesis which translates the model into a singularly perturbed system of three time scales. It is demonstrated that in some realistic system parameter region, the model has a unimodal or logistic-like Poincare return map when the singular parameter for the fastest variable is at the limiting value 0. It is also demonstrated that the unimodal map goes through a sequence of period-doubling bifurcations to chaos. The mechanism for the creation of the unimodal criticality is due to the existence of a junction-fold point [B. Deng, J. Math. Biol. 38, 21-78 (1999)]. The fact that junction-fold points are structurally stable and the limiting structures persist gives us a rigorous but dynamical explanation as to why basic food chain dynamics can be chaotic. (c) 2001 American Institute of Physics.

[1]  P Hogeweg,et al.  Interactive instruction on population interactions. , 1978, Computers in biology and medicine.

[2]  O. Rössler Chaotic Behavior in Simple Reaction Systems , 1976 .

[3]  S Rinaldi,et al.  Remarks on food chain dynamics. , 1996, Mathematical biosciences.

[4]  S. Rinaldi,et al.  Yield and Dynamics of Tritrophic Food Chains , 1997, The American Naturalist.

[5]  Yuri A. Kuznetsov,et al.  Belyakov Homoclinic Bifurcations in a Tritrophic Food Chain Model , 2001, SIAM J. Appl. Math..

[6]  Sergio Rinaldi,et al.  Slow-fast limit cycles in predator-prey models , 1992 .

[7]  A. Y. Kolesov,et al.  Asymptotic Methods in Singularly Perturbed Systems , 1994 .

[8]  Michael E. Gilpin,et al.  Spiral Chaos in a Predator-Prey Model , 1979, The American Naturalist.

[9]  Stephen P. Ellner,et al.  Chaos in a Noisy World: New Methods and Evidence from Time-Series Analysis , 1995, The American Naturalist.

[10]  Y. Lenbury,et al.  Low- and high-frequency oscillations in a food chain where one of the competing species feeds on the other , 1994 .

[11]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[12]  D. Terman,et al.  The transition from bursting to continuous spiking in excitable membrane models , 1992 .

[13]  V. Volterra Fluctuations in the Abundance of a Species considered Mathematically , 1926, Nature.

[14]  Stephen Schecter,et al.  Persistent unstable equilibria and closed orbits of a singularly perturbed equation , 1985 .

[15]  William M. Schaffer,et al.  Stretching and Folding in Lynx Fur Returns: Evidence for a Strange Attractor in Nature? , 1984, The American Naturalist.

[16]  Bo Deng,et al.  Glucose-induced period-doubling cascade in the electrical activity of pancreatic β-cells , 1999, Journal of mathematical biology.

[17]  C. Elton,et al.  The Ten-Year Cycle in Numbers of the Lynx in Canada , 1942 .

[18]  S Rinaldi,et al.  Singular homoclinic bifurcations in tritrophic food chains. , 1998, Mathematical biosciences.

[19]  Wiktor Eckhaus,et al.  Relaxation oscillations including a standard chase on French ducks , 1983 .

[20]  Sergio Rinaldi,et al.  A separation condition for the existence of limit cycles in slow-fast systems , 1991 .

[21]  Bo Deng CONSTRUCTING HOMOCLINIC ORBITS AND CHAOTIC ATTRACTORS , 1994 .

[22]  F. Takens Detecting strange attractors in turbulence , 1981 .

[23]  Sebastiaan A.L.M. Kooijman,et al.  Homoclinic and heteroclinic orbits to a cycle in a tri-trophic food chain , 1999 .

[24]  Bo Deng Folding at the genesis of chaos , 1995 .

[25]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[26]  Sergio Rinaldi,et al.  Low- and high-frequency oscillations in three-dimensional food chain systems , 1992 .

[27]  Bernd Blasius,et al.  Complex dynamics and phase synchronization in spatially extended ecological systems , 1999, Nature.

[28]  R. Macarthur,et al.  Graphical Representation and Stability Conditions of Predator-Prey Interactions , 1963, The American Naturalist.

[29]  V. Volterra Fluctuations in the Abundance of a Species considered Mathematically , 1926 .

[30]  Ferdinand Verhulst Asymptotic Analysis II , 1983 .

[31]  S. Rinaldi,et al.  Top‐predator abundance and chaos in tritrophic food chains , 1999 .

[32]  Bo Deng,et al.  Homoclinic twisting bifurcations and cusp horseshoe maps , 1993 .

[33]  C. S. Holling Some Characteristics of Simple Types of Predation and Parasitism , 1959, The Canadian Entomologist.

[34]  A. Hastings,et al.  Chaos in a Three-Species Food Chain , 1991 .

[35]  É. Benoît,et al.  Chasse au canard (première partie) , 1981 .

[36]  Kevin S. McCann,et al.  Bifurcation Structure of a Three-Species Food-Chain Model , 1995 .

[37]  Armin Schmidt,et al.  Zur Umsetzung von Trichloracetimidsäuremethylester mit Antimon(V)-chlorid. , 1976 .

[38]  A. J. Lotka Elements of Physical Biology. , 1925, Nature.