Robust Clock Skew and Offset Estimation for IEEE 1588 in the Presence of Unexpected Deterministic Path Delay Asymmetries

IEEE 1588, built on the classical two-way message exchange scheme, is a popular clock synchronization protocol for packet-switched networks. Due to the presence of random queuing delays in a packet-switched network, the joint recovery of the clock skew and offset from the timestamps of the exchanged synchronization packets can be treated as a statistical estimation problem. In this paper, we address the problem of clock skew and offset estimation for IEEE 1588 in the presence of possible unknown asymmetries between the deterministic path delays of the forward master-to-slave path and reverse slave-to-master path, which can result from incorrect modeling or cyber-attacks. First, we develop lower bounds on the mean square estimation error for a clock skew and offset estimation scheme for IEEE 1588 assuming the availability of multiple master-slave communication paths and complete knowledge of the probability density functions (pdf) describing the random queuing delays. Approximating the pdf of the random queuing delays by a mixture of Gaussian random variables, we then present a robust iterative clock skew and offset estimation scheme that employs the space alternating generalized expectation-maximization (SAGE) algorithm for learning all the unknown parameters. Numerical results indicate that the developed robust scheme exhibits a mean square estimation error close to the lower bounds.

[1]  K. Harris An application of IEEE 1588 to Industrial Automation , 2008, 2008 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication.

[2]  Thilo Sauter,et al.  Improving Fault Tolerance in High-Precision Clock Synchronization , 2010, IEEE Transactions on Industrial Informatics.

[3]  Yik-Chung Wu,et al.  Improved Estimation of Clock Offset in Sensor Networks , 2009, 2009 IEEE International Conference on Communications.

[4]  T. Mizrahi A game theoretic analysis of delay attacks against time synchronization protocols , 2012, 2012 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication Proceedings.

[5]  Erchin Serpedin,et al.  On Minimum Variance Unbiased Estimation of Clock Offset in a Two-Way Message Exchange Mechanism , 2010, IEEE Transactions on Information Theory.

[6]  Peng Ning,et al.  TinySeRSync: secure and resilient time synchronization in wireless sensor networks , 2006, CCS '06.

[7]  Rick S. Blum,et al.  Robust Phase Offset Estimation for IEEE 1588 PTP in Electrical Grid Networks , 2018, 2018 IEEE Power & Energy Society General Meeting (PESGM).

[8]  David L. Mills,et al.  Internet time synchronization: the network time protocol , 1991, IEEE Trans. Commun..

[9]  Rick S. Blum,et al.  Optimum Full Information, Unlimited Complexity, Invariant, and Minimax Clock Skew and Offset Estimators for IEEE 1588 , 2019, IEEE Transactions on Communications.

[10]  Deborah Estrin,et al.  Proceedings of the 5th Symposium on Operating Systems Design and Implementation Fine-grained Network Time Synchronization Using Reference Broadcasts , 2022 .

[11]  Jeff A. Bilmes,et al.  A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models , 1998 .

[12]  K. Yıldırım CLOCK SYNCHRONIZATION IN WIRELESS SENSOR NETWORKS , 2012 .

[13]  Arun Kumar Sangaiah,et al.  A Robust Time Synchronization Scheme for Industrial Internet of Things , 2018, IEEE Transactions on Industrial Informatics.

[14]  Jun Li,et al.  Maximum likelihood estimators of clock offset and skew under exponential delays , 2009 .

[15]  G. Gaderer,et al.  Clock synchronization in powerline networks , 2005, International Symposium on Power Line Communications and Its Applications, 2005..

[16]  M. Ullmann,et al.  Delay attacks — Implication on NTP and PTP time synchronization , 2009, 2009 International Symposium on Precision Clock Synchronization for Measurement, Control and Communication.

[17]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[18]  Rick S. Blum,et al.  Functional Forms of Optimum Spoofing Attacks for Vector Parameter Estimation in Quantized Sensor Networks , 2016, IEEE Transactions on Signal Processing.

[19]  Amin Vahdat,et al.  Exploiting a Natural Network Effect for Scalable, Fine-grained Clock Synchronization , 2018, NSDI.

[20]  D. Hatzinakos,et al.  Gaussian Mixtures and Their Applications to Signal Processing , 2017 .

[21]  Ying Zhang,et al.  A Measurement Study of Internet Delay Asymmetry , 2008, PAM.

[22]  Tal Mizrahi,et al.  Multi-path Time Protocols , 2013, 2013 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication (ISPCS) Proceedings.

[23]  Vijay K. Rohatgi,et al.  Robustness of statistical tests , 1989 .

[24]  Dennis R. Morgan,et al.  A Synchronization Algorithm for Packet MANs , 2011, IEEE Transactions on Communications.

[25]  T. Mizrahi,et al.  Slave diversity: Using multiple paths to improve the accuracy of clock synchronization protocols , 2012, 2012 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication Proceedings.

[26]  Jan M. Rabaey,et al.  Lightweight time synchronization for sensor networks , 2003, WSNA '03.

[27]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[28]  Rick S. Blum,et al.  Estimation Theory-Based Robust Phase Offset Determination in Presence of Possible Path Asymmetries , 2018, IEEE Transactions on Communications.

[29]  Alfred O. Hero,et al.  Space-alternating generalized expectation-maximization algorithm , 1994, IEEE Trans. Signal Process..

[30]  Bruce W. Suter,et al.  Novel Clock Phase Offset and Skew Estimation Using Two-Way Timing Message Exchanges for Wireless Sensor Networks , 2007, IEEE Transactions on Communications.

[31]  Stergios Stergiopoulos,et al.  Advanced Signal Processing Handbook: Theory and Implementation for Radar, Sonar, and Medical Imaging Real-Time Systems , 2000 .

[32]  Kang Lee,et al.  IEEE 1588 standard for a precision clock synchronization protocol for networked measurement and control systems , 2002, 2nd ISA/IEEE Sensors for Industry Conference,.

[33]  Rick S. Blum,et al.  A Fundamental Limitation on Maximum Parameter Dimension for Accurate Estimation With Quantized Data , 2016, IEEE Transactions on Information Theory.

[34]  Hakim Weatherspoon,et al.  Globally Synchronized Time via Datacenter Networks , 2016, SIGCOMM.

[35]  Rick S. Blum,et al.  On the Optimum Design of L-Estimators for Phase Offset Estimation in IEEE 1588 , 2015, IEEE Transactions on Communications.

[36]  Erchin Serpedin,et al.  On Maximum Likelihood Estimation of Clock Offset and Skew in Networks With Exponential Delays , 2008, IEEE Transactions on Signal Processing.

[37]  Mahesh Sooriyabandara,et al.  TCP Performance Implications of Network Path Asymmetry , 2002, RFC.

[38]  Rick S. Blum,et al.  Minimax Optimum Estimators for Phase Synchronization in IEEE 1588 , 2015, IEEE Transactions on Communications.

[39]  Saurabh Ganeriwal,et al.  Timing-sync protocol for sensor networks , 2003, SenSys '03.

[40]  Dirk Timmermann,et al.  PTP-LP: Using Linear Programming to Increase the Delay Robustness of IEEE 1588 PTP , 2018, 2018 IEEE Global Communications Conference (GLOBECOM).

[41]  Rick S. Blum,et al.  An adaptive spatial diversity receiver for non-Gaussian interference and noise , 1997, First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications.

[42]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[43]  Panganamala Ramana Kumar,et al.  Fundamental Limits on Synchronizing Clocks Over Networks , 2011, IEEE Transactions on Automatic Control.