Active terahertz metamaterials

In this paper we present an overview of research in our group in terahertz (THz) metamaterials and their applications. We have developed a series of planar metamaterials operating at THz frequencies, all of which exhibit a strong resonant response. By incorporating natural materials, e.g., semiconductors, as the substrates or as critical regions of metamaterial elements, we are able to effectively control the metamaterial resonance by the application of external stimuli, e.g., photoexcitation and electrical bias. Such actively controllable metamaterials provide novel functionalities for solid-state device applications with unprecedented performance, such as THz spectroscopy, imaging, and many others.

[1]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[2]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[3]  John E. Bowers,et al.  Self-assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics , 1999 .

[4]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[5]  Martin Koch,et al.  An optically controllable terahertz filter , 2000 .

[6]  Gottfried Strasser,et al.  Terahertz phase modulator , 2000 .

[7]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[8]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[9]  M. Koch,et al.  Room-temperature operation of an electrically driven terahertz modulator , 2004 .

[10]  R. Blaikie,et al.  Super-resolution imaging through a planar silver layer. , 2005, Optics express.

[11]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[12]  Ci-Ling Pan,et al.  Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate. , 2006, Optics letters.

[13]  Eleftherios N. Economou,et al.  Negative‐Index Materials: New Frontiers in Optics , 2006 .

[14]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[15]  David R. Smith,et al.  Negative refractive index metamaterials , 2006 .

[16]  Willie J Padilla,et al.  Dynamical electric and magnetic metamaterial response at terahertz frequencies , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[17]  Willie J Padilla,et al.  Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices. , 2007, Optics letters.

[18]  Willie J Padilla,et al.  Complementary planar terahertz metamaterials. , 2007, Optics express.

[19]  Antoinette J. Taylor,et al.  Effects of Microstructure Variations on Macroscopic Terahertz Metafilm Properties , 2007 .

[20]  Willie J Padilla Group theoretical description of artificial electromagnetic metamaterials. , 2007, Optics express.

[21]  V. Shalaev Optical negative-index metamaterials , 2007 .

[22]  Abul K. Azad,et al.  Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .

[23]  David R. Smith,et al.  Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves , 2008 .

[24]  D. Abbott,et al.  Metamaterials in the Terahertz Regime , 2009, IEEE Photonics Journal.

[25]  Igal Brener,et al.  Metamaterials for THz polarimetric devices. , 2009, Optics express.

[26]  Wai Lam Chan,et al.  A spatial light modulator for terahertz beams , 2009 .

[27]  Willie J Padilla,et al.  A metamaterial solid-state terahertz phase modulator , 2009 .