Minimum weight perfect matching of fault-tolerant topological quantum error correction in average O(1) parallel time

Consider a 2-D square array of qubits of extent L × L. We provide a proof that the minimum weight perfect matching problem associated with running a particular class of topological quantum error correction codes on this array can be exactly solved with a 2-D square array of classical computing devices, each of which is nominally associated with a fixed number N of qubits, in constant average time per round of error detection independent of L provided physical error rates are below fixed nonzero values, and other physically reasonable assumptions. This proof is applicable to the fully fault-tolerant case only, not the case of perfect stabilizer measurements.

[1]  D. Spielman,et al.  Expander codes , 1996 .

[2]  Andrew V. Goldberg,et al.  Maximum skew-symmetric flows and matchings , 2004, Math. Program..

[3]  Robert E. Tarjan,et al.  Faster scaling algorithms for general graph matching problems , 1991, JACM.

[4]  J. Harrington,et al.  Analysis of quantum error-correcting codes: symplectic lattice codes and toric codes , 2004 .

[5]  Michael Viderman,et al.  Linear time decoding of regular expander codes , 2012, ITCS '12.

[6]  David Poulin,et al.  Fault-tolerant renormalization group decoder for abelian topological codes , 2013, Quantum Inf. Comput..

[7]  Shafi Goldwasser,et al.  Proceedings of the 3rd Innovations in Theoretical Computer Science Conference , 2012 .

[8]  Austin G. Fowler,et al.  Topological cluster state quantum computing , 2008, Quantum Inf. Comput..

[9]  Rune B. Lyngsø,et al.  Lecture Notes I , 2008 .

[10]  Harold N. Gabow,et al.  An Efficient Implementation of Edmonds' Algorithm for Maximum Matching on Graphs , 1976, JACM.

[11]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[12]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[13]  E. Knill,et al.  Accuracy threshold for quantum computation , 1996 .

[14]  Harold Neil Gabow,et al.  Implementation of algorithms for maximum matching on nonbipartite graphs , 1973 .

[15]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[16]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .