Effect of Rigid Bridge-Protection Units, Quadrupolar Interactions, and Blending in Organic Electro-Optic Chromophores

A new organic electro-optic (EO) molecule was designed with two modifications aimed at increasing acentric order. The molecule is based on the well-known CLD donor-π bridge-acceptor template. The first structural modification introduces rigid aromatic fluorenyl and naphthyl site-isolation units (sterically bulky functional groups) to reduce aggregation. Site isolation units have been used in the past, but this is the first time that both the “front” and “back” of the CLD tetraene bridge have been modified with site-isolation units, and we had to introduce new synthetic methodology to do so. The second design element was the inclusion of cooperatively interacting aromatic dendron (HD) and fluoroaromatic dendron (FD) side groups to increase the acentric order. HD/FD units have previously been successfully used to increase EO performance, but we changed their location on the chromophore: they are attached to the donor and acceptor ends of the molecule to better match side chain ordering with the dipole momen...

[1]  M. Lauermann,et al.  Low-power silicon-organic hybrid (SOH) modulators for advanced modulation formats. , 2014, Optics express.

[2]  E.L. Wooten,et al.  A review of lithium niobate modulators for fiber-optic communications systems , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  Bruce H. Robinson,et al.  Laser-Assisted Poling of Binary Chromophore Materials† , 2008 .

[4]  Z. Gu,et al.  Palladium-Catalyzed Enantioselective Synthesis of 2-Aryl Cyclohex-2-enone Atropisomers: Platform Molecules for the Divergent Synthesis of Axially Chiral Biaryl Compounds. , 2017, Angewandte Chemie.

[5]  J. Qin,et al.  High-generation second-order nonlinear optical (NLO) dendrimers: convenient synthesis by click chemistry and the increasing trend of NLO effects. , 2010, Angewandte Chemie.

[6]  Robin Barnes,et al.  Reduced dimensionality in organic electro-optic materials: theory and defined order. , 2010, The journal of physical chemistry. B.

[7]  D. Poirier,et al.  Synthesis and steroid sulphatase inhibitory activity of C19- and C21-steroidal derivatives bearing a benzyl-inhibiting group. , 2001, European journal of medicinal chemistry.

[8]  Ilya V. Kosilkin Organic Materials for Electro-Optic and Optoelectronic Applications: Understanding Structure -- Property Relationships , 2012 .

[9]  Kimihiko Hirao,et al.  Nonlinear optical property calculations by the long-range-corrected coupled-perturbed Kohn-Sham method. , 2005, The Journal of chemical physics.

[10]  Bruce H. Robinson,et al.  Matrix-Assisted Poling of Monolithic Bridge-Disubstituted Organic NLO Chromophores , 2014 .

[11]  R Lawson,et al.  Optical modulation and detection in slotted Silicon waveguides. , 2005, Optics express.

[12]  Jingdong Luo,et al.  Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses. , 2007, Journal of the American Chemical Society.

[13]  Zhang,et al.  Low (Sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape , 2000, Science.

[14]  A. Jen,et al.  Electro-optic (E-O) molecular glasses. , 2009, Chemistry, an Asian journal.

[15]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[16]  A. Jen,et al.  Mesoscale dynamics and cooperativity of networking dendronized nonlinear optical molecular glasses. , 2008, Nano letters.

[17]  D Hillerkuss,et al.  Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ. , 2017, Optics express.

[18]  A. Jen,et al.  Quantitative Determination of the Chromophore Alignment Induced by Electrode Contact Poling in Self-Assembled NLO Materials , 2009 .

[19]  Juerg Leuthold,et al.  Harnessing nonlinearities near material absorption resonances for reducing losses in plasmonic modulators , 2017 .

[20]  Raluca Dinu,et al.  100 GHz silicon–organic hybrid modulator , 2014, Light: Science & Applications.

[21]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[22]  T. Baehr‐Jones,et al.  Polymer Silicon Hybrid Systems: A Platform for Practical Nonlinear Optics† , 2008 .

[23]  C. C. Teng,et al.  Simple reflection technique for measuring the electro‐optic coefficient of poled polymers , 1990 .

[24]  Raluca Dinu,et al.  Silicon-Organic Hybrid Electro-Optical Devices , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[25]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[26]  Mark A Ratner,et al.  Self-assembly from the gas-phase: design and implementation of small-molecule chromophore precursors with large nonlinear optical responses. , 2009, Journal of the American Chemical Society.

[27]  Jean M. J. Fréchet,et al.  One-step synthesis of hyperbranched dendritic polyesters , 1991 .

[28]  A. Jen,et al.  Conjugated Polycyanines: A New Class of Materials with Large Third‐Order Optical Nonlinearities , 2015 .

[29]  Rebecca L. M. Gieseking,et al.  Effect of Bulky Substituents on Thiopyrylium Polymethine Aggregation in the Solid State: A Theoretical Evaluation of the Implications for All-Optical Switching Applications , 2014 .

[30]  J. Perry,et al.  Practical Model for First Hyperpolarizability Dispersion Accounting for Both Homogeneous and Inhomogeneous Broadening Effects. , 2012, The journal of physical chemistry letters.

[31]  Rebecca L. M. Gieseking,et al.  Polymethine materials with solid-state third-order optical susceptibilities suitable for all-optical signal-processing applications , 2014 .

[32]  Wolfgang Freude,et al.  Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) Integration , 2016 .

[33]  M. M. Zahedi,et al.  Facile solvent-free synthesis and structural elucidation of styrylcyclohex-2-enone derivatives , 2008 .

[34]  D. Reinhoudt,et al.  Enhanced poling efficiency in highly thermal and photostable nonlinear optical chromophores , 2008 .

[35]  Larry R. Dalton,et al.  Binary Chromophore Systems in Nonlinear Optical Dendrimers and Polymers for Large Electrooptic Activities , 2008 .

[36]  Ruimin Xu,et al.  Structure–function relationship exploration for enhanced thermal stability and electro-optic activity in monolithic organic NLO chromophores , 2016 .

[37]  Bruce H. Robinson,et al.  Toward optimal EO response from ONLO chromophores: a statistical mechanics study of optimizing shape , 2016 .

[38]  David Hillerkuss,et al.  Plasmonic Organic Hybrid Modulators—Scaling Highest Speed Photonics to the Microscale , 2016, Proceedings of the IEEE.

[39]  Larry R Dalton,et al.  Electric field poled organic electro-optic materials: state of the art and future prospects. , 2010, Chemical reviews.

[40]  Wolfgang Freude,et al.  Silicon Organic Hybrid Technology—A Platform for Practical Nonlinear Optics , 2009, Proceedings of the IEEE.

[41]  Wenbo Wu,et al.  New design strategies for second-order nonlinear optical polymers and dendrimers , 2013 .

[42]  C. Koos,et al.  Record-high in-device electro-optic coefficient of 359 pm/V in a silicon-organic hybrid (SOH) modulator , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[43]  J. Leuthold,et al.  Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission. , 2014, Optics express.

[44]  K. Garrett,et al.  Computational Study of Linear and Nonlinear Optical Properties of Single Molecules and Clusters of Organic Electro-Optic Chromophores , 2015 .

[45]  M. Kuzyk,et al.  Fundamental limits of all nonlinear-optical phenomena that are representable by a second-order nonlinear susceptibility. , 2006, The Journal of chemical physics.

[46]  Antao Chen,et al.  Theory-guided design and synthesis of multichromophore dendrimers: an analysis of the electro-optic effect. , 2007, Journal of the American Chemical Society.

[47]  Raluca Dinu,et al.  High-speed plasmonic phase modulators , 2014, Nature Photonics.

[48]  Seth R. Marder,et al.  Experimental Demonstration of the Dependence of the First Hyperpolarizability of Donor-Acceptor-Substituted Polyenes on the Ground-State Polarization and Bond Length Alternation , 1994 .

[49]  Ruimin Xu,et al.  Benzocyclobutene barrier layer for suppressing conductance in nonlinear optical devices during electric field poling , 2014 .

[50]  Larry R. Dalton,et al.  Low Vπ electrooptic modulators from CLD-1 : Chromophore design and synthesis, material processing, and characterization , 2001 .

[51]  J. Oudar,et al.  Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds , 1977 .

[52]  B H Robinson,et al.  The role of London forces in defining noncentrosymmetric order of high dipole moment-high hyperpolarizability chromophores in electrically poled polymeric thin films. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Larry R. Dalton,et al.  Organic Electro-Optics and Photonics by Larry R. Dalton , 2015 .

[54]  D. Hillerkuss,et al.  108 Gbit/s Plasmonic Mach–Zehnder Modulator with > 70-GHz Electrical Bandwidth , 2016, Journal of Lightwave Technology.

[55]  Larry R Dalton,et al.  Theory-inspired development of organic electro-optic materials. , 2010, Accounts of chemical research.

[56]  Larry R. Dalton,et al.  Effects of side-chain modification on poling efficiency of highly polarizable nonlinear optical chromophores in electro-optical polymers , 2002, SPIE Optics + Photonics.

[57]  Corwin Hansch,et al.  A survey of Hammett substituent constants and resonance and field parameters , 1991 .

[58]  Bruce H Robinson,et al.  Rational enhancement of second-order nonlinearity: bis-(4-methoxyphenyl)hetero-aryl-amino donor-based chromophores: design, synthesis, and electrooptic activity. , 2008, Journal of the American Chemical Society.

[59]  David Hillerkuss,et al.  All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale , 2015, Nature Photonics.

[60]  J. Hulliger,et al.  Fluorine in crystal engineering--"the little atom that could". , 2005, Chemical Society reviews.

[61]  M. Miri,et al.  Ultra-wideband high-speed Mach-Zehnder switch based on hybrid plasmonic waveguides. , 2017, Applied optics.

[62]  D Hillerkuss,et al.  High speed plasmonic modulator array enabling dense optical interconnect solutions. , 2015, Optics express.

[63]  Chen Zhang,et al.  Gold-catalyzed hydrative cyclization of 1,6-diynes in ionic liquid media , 2010 .

[64]  D Zhang,et al.  Unprecedented highest electro-optic coefficient of 226 pm/V for electro-optic polymer/TiO₂ multilayer slot waveguide modulators. , 2014, Optics express.

[65]  Larry R. Dalton,et al.  Donor-Acceptor Thiolated Polyenic Chromophores Exhibiting Large Optical Nonlinearity and Excellent Photostability , 2008 .

[66]  Wolfgang Freude,et al.  High-Speed, Low Drive-Voltage Silicon-Organic Hybrid Modulator Based on a Binary-Chromophore Electro-Optic Material , 2014, Journal of Lightwave Technology.

[67]  Seth R. Marder,et al.  25th Anniversary Article: Design of Polymethine Dyes for All‐Optical Switching Applications: Guidance from Theoretical and Computational Studies , 2014, Advanced materials.

[68]  L. Dalton,et al.  Organic Electro-Optics and Photonics: Molecules, Polymers, and Crystals Larry R. Dalton, Peter Günter, Mojca Jazbinsek, O-Pil Kwon, and Philip A. Sullivan , 2015 .

[69]  Jingdong Luo,et al.  Surface-normal plasmonic modulator using sub-wavelength metal grating on electro-optic polymer thin film , 2015 .

[70]  Lewis E Johnson,et al.  Optimizing calculations of electronic excitations and relative hyperpolarizabilities of electrooptic chromophores. , 2014, Accounts of chemical research.

[71]  Juerg Leuthold,et al.  Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design. , 2017, Optics express.

[72]  Larry R. Dalton,et al.  Highly Efficient and Thermally Stable Electro‐Optical Dendrimers for Photonics , 2002 .

[73]  L. Dalton,et al.  Nanoscale phase analysis of molecular cooperativity and thermal transitions in dendritic nonlinear optical glasses. , 2012, The journal of physical chemistry. B.

[74]  Jingdong Luo,et al.  Supramolecular Self‐Assembled Dendritic Nonlinear Optical Chromophores: Fine‐Tuning of Arene–Perfluoroarene Interactions for Ultralarge Electro‐Optic Activity and Enhanced Thermal Stability , 2009 .

[75]  A. Jen,et al.  Poling efficiency enhancement of tethered binary nonlinear optical chromophores for achieving an ultrahigh n3r33 figure-of-merit of 2601 pm V−1 , 2015 .

[76]  Larry R. Dalton,et al.  Guest-Host Cooperativity in Organic Materials Greatly Enhances the Nonlinear Optical Response , 2008 .

[77]  A. Jen,et al.  Push–pull tetraene chromophores derived from dialkylaminophenyl, tetrahydroquinolinyl and julolidinyl moieties: optimization of second-order optical nonlinearity by fine-tuning the strength of electron-donating groups , 2012 .

[78]  Wolfgang Freude,et al.  Femtojoule electro-optic modulation using a silicon–organic hybrid device , 2015, Light: Science & Applications.

[79]  M. Hersam,et al.  Hybrid gate dielectric materials for unconventional electronic circuitry. , 2014, Accounts of chemical research.

[80]  Xingyu Zhang,et al.  Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide. , 2013, Optics letters.