APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy

The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze thechemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars with [Fe/H] ≳ −0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function.

[1]  R. Ibata,et al.  Chemical abundances in the nucleus of the Sagittarius dwarf spheroidal galaxy , 2017, 1705.03251.

[2]  C. Prieto,et al.  Chemical trends in the Galactic halo from APOGEE data , 2016, 1611.01249.

[3]  R. Poleski,et al.  OGLE Study of the Sagittarius Dwarf Spheroidal Galaxy and its M54 Globular Cluster , 2016, 1605.04906.

[4]  B. Andrews,et al.  Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models , 2016, 1604.08613.

[5]  D. A. García-Hernández,et al.  Red giant masses and ages derived from carbon and nitrogen abundances , 2015, 1511.08203.

[6]  Nicholas Troup,et al.  ASPCAP: THE APOGEE STELLAR PARAMETER AND CHEMICAL ABUNDANCES PIPELINE , 2015, 1510.07635.

[7]  T. Beers,et al.  THE FRACTIONS OF INNER- AND OUTER-HALO STARS IN THE LOCAL VOLUME , 2015, 1510.07630.

[8]  Liverpool John Moores University,et al.  Post first dredge-up [C/N] ratio as age indicator. Theoretical calibration , 2015, 1509.06904.

[9]  Thomas Masseron,et al.  Using chemical tagging to redefine the interface of the Galactic disc and halo , 2015, 1507.03604.

[10]  C. Morisset,et al.  Oxygen enrichment in carbon-rich planetary nebulae , 2015, 1502.06043.

[11]  F. Castelli,et al.  NEW H-BAND STELLAR SPECTRAL LIBRARIES FOR THE SDSS-III/APOGEE SURVEY , 2015, 1502.05237.

[12]  A. McWilliam,et al.  The IGIMF and other IMFs in dSphs: the case of Sagittarius , 2015, 1502.05221.

[13]  Young Sun Lee,et al.  CARBON IN RED GIANTS IN GLOBULAR CLUSTERS AND DWARF SPHEROIDAL GALAXIES , 2015, 1501.06908.

[14]  Annie C. Robin,et al.  ABUNDANCES, STELLAR PARAMETERS, AND SPECTRA FROM THE SDSS-III/APOGEE SURVEY , 2015, 1501.04110.

[15]  Scott W. Fleming,et al.  THE DATA REDUCTION PIPELINE FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2015, 1501.03742.

[16]  Usa,et al.  s-process enrichment in the planetary nebula NGC 3918. Results from deep echelle spectrophotometry , 2014, 1506.07079.

[17]  C. Allende Prieto,et al.  Deep SDSS optical spectroscopy of distant halo stars - I. Atmospheric parameters and stellar metallicity distribution , 2014, 1406.4997.

[18]  W. Schuster,et al.  Carbon and oxygen abundances in stellar populations , 2014, 1406.5218.

[19]  J. Lattanzio,et al.  The Dawes Review 2: Nucleosynthesis and Stellar Yields of Low- and Intermediate-Mass Single Stars , 2014, Publications of the Astronomical Society of Australia.

[20]  K. Nomoto,et al.  THE ORIGIN OF LOW [α/Fe] RATIOS IN EXTREMELY METAL-POOR STARS , 2014, 1403.1796.

[21]  T. Beers,et al.  Stellar haloes in Milky Way mass galaxies: from the inner to the outer haloes , 2013, 1309.3609.

[22]  R. Beaton,et al.  DISCOVERY OF A DYNAMICAL COLD POINT IN THE HEART OF THE SAGITTARIUS dSph GALAXY WITH OBSERVATIONS FROM THE APOGEE PROJECT , 2013, 1309.5535.

[23]  G. Wallerstein,et al.  CHEMISTRY OF THE SAGITTARIUS DWARF GALAXY: A TOP-LIGHT INITIAL MASS FUNCTION, OUTFLOWS, AND THE R-PROCESS , 2013, 1309.2974.

[24]  F. Primas,et al.  Chemical abundances in LMC stellar populations II. The bar sample , 2013, 1306.4224.

[25]  C. Prieto,et al.  OXYGEN ABUNDANCES IN NEARBY FGK STARS AND THE GALACTIC CHEMICAL EVOLUTION OF THE LOCAL DISK AND HALO , 2013, 1301.1582.

[26]  Tucson,et al.  Stellar haloes of simulated Milky-Way-like galaxies: Chemical and kinematic properties , 2013, 1301.1301.

[27]  A. Zijlstra,et al.  Carbon enrichment of the evolved stars in the Sagittarius dwarf spheroidal , 2012, 1209.2563.

[28]  Spain.,et al.  Analysis of chemical abundances in planetary nebulae with [WC] central stars - I. Line intensities and physical conditions , 2011, 1111.4992.

[29]  P. Kroupa,et al.  The stellar and sub-stellar IMF of simple and composite populations , 2011, 1112.3340.

[30]  A. Helmi,et al.  VLT/FLAMES spectroscopy of red giant branch stars in the Fornax dwarf spheroidal galaxy , 2011, 1409.7703.

[31]  J. Schaye,et al.  Global structure and kinematics of stellar haloes in cosmological hydrodynamic simulations , 2011, 1111.1747.

[32]  S. Majewski,et al.  THE ACS SURVEY OF GALACTIC GLOBULAR CLUSTERS. XI. THE THREE-DIMENSIONAL ORIENTATION OF THE SAGITTARIUS DWARF SPHEROIDAL GALAXY AND ITS GLOBULAR CLUSTERS , 2011, 1108.6276.

[33]  M. Oey ON THE ORIGIN OF THE SALPETER SLOPE FOR THE INITIAL MASS FUNCTION , 2011, 1108.2287.

[34]  S. Majewski,et al.  ASSESSING THE MILKY WAY SATELLITES ASSOCIATED WITH THE SAGITTARIUS DWARF SPHEROIDAL GALAXY , 2010, 1005.5390.

[35]  E. Carretta,et al.  M54 + SAGITTARIUS = {omega} CENTAURI , 2010 .

[36]  D. Hogg,et al.  THE DUAL ORIGIN OF STELLAR HALOS. II. CHEMICAL ABUNDANCES AS TRACERS OF FORMATION HISTORY , 2010, 1004.3789.

[37]  S. Majewski,et al.  THE SAGITTARIUS DWARF GALAXY: A MODEL FOR EVOLUTION IN A TRIAXIAL MILKY WAY HALO , 2010, 1003.1132.

[38]  W. Hillebrandt,et al.  NUCLEOSYNTHESIS IN TWO-DIMENSIONAL DELAYED DETONATION MODELS OF TYPE Ia SUPERNOVA EXPLOSIONS , 2010, 1002.2153.

[39]  G. Piotto,et al.  M54 + SAGITTARIUS = ω CENTAURI , 2010, 1002.1963.

[40]  William J. Schuster,et al.  Two distinct halo populations in the solar neighborhood - Evidence from stellar abundance ratios and kinematics , 2010, 1002.4514.

[41]  A. Karakas Updated stellar yields from asymptotic giant branch models , 2009, 0912.2142.

[42]  Robert Barkhouser,et al.  The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2007, Astronomical Telescopes + Instrumentation.

[43]  Doug Geisler,et al.  A TWO MICRON ALL SKY SURVEY VIEW OF THE SAGITTARIUS DWARF GALAXY. VI. s-PROCESS AND TITANIUM ABUNDANCE VARIATIONS ALONG THE SAGITTARIUS STREAM , 2009, 0911.4364.

[44]  C. Brook,et al.  THE DUAL ORIGIN OF STELLAR HALOS , 2009, 0904.3333.

[45]  J. Bullock,et al.  Λ Cold Dark Matter, Stellar Feedback, and the Galactic Halo Abundance Pattern , 2008 .

[46]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[47]  V. Smith,et al.  Chemical Abundances and Kinematics in Globular Clusters and Local Group Dwarf Galaxies and Their Implications for Formation Theories of the Galactic Halo , 2007, 0708.0570.

[48]  S. Majewski,et al.  The ACS Survey of Galactic Globular Clusters: M54 and Young Populations in the Sagittarius Dwarf Spheroidal Galaxy , 2007, 0708.0027.

[49]  Santiago,et al.  The exotic chemical composition of the Sagittarius dwarf Spheroidal galaxy , 2006 .

[50]  E. Pellegrini,et al.  s-Process Abundances in Planetary Nebulae , 2006, astro-ph/0612101.

[51]  K. Cunha,et al.  A 2MASS All-Sky View of the Sagittarius Dwarf Galaxy. V. Variation of the Metallicity Distribution Function along the Sagittarius Stream , 2006, astro-ph/0605101.

[52]  A. Helmi,et al.  The DART Imaging And CaT Survey of the Fornax Dwarf Spheroidal Galaxy , 2006, astro-ph/0608370.

[53]  K. Nomoto,et al.  Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution , 2006, astro-ph/0605725.

[54]  Princeton,et al.  The Field of Streams: Sagittarius and Its Siblings , 2006, astro-ph/0605025.

[55]  A. Chieffi,et al.  The Nucleosynthesis of 26Al and 60Fe in Solar Metallicity Stars Extending in Mass from 11 to 120 M☉: The Hydrostatic and Explosive Contributions , 2006, astro-ph/0604297.

[56]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[57]  B. Robertson,et al.  Chemical Abundance Distributions of Galactic Halos and Their Satellite Systems in a ΛCDM Universe , 2005, astro-ph/0507114.

[58]  P. Kroupa,et al.  The Variation of Integrated Star Initial Mass Functions among Galaxies , 2005, astro-ph/0502525.

[59]  Lars Hernquist,et al.  Λ Cold Dark Matter, Stellar Feedback, and the Galactic Halo Abundance Pattern , 2005, astro-ph/0501398.

[60]  V. Smith,et al.  “Sculptor-ing” the Galaxy? The Chemical Compositions of Red Giants in the Sculptor Dwarf Spheroidal Galaxy , 2004, astro-ph/0412065.

[61]  Vanessa Hill,et al.  Two Distinct Ancient Components in the Sculptor Dwarf Spheroidal Galaxy: First Results from the Dwarf Abundances and Radial Velocities Team , 2004 .

[62]  A. Helmi,et al.  Two distinct ancient components in the Sculptor Dwarf Spheroidal Galaxy: First Results from DART , 2004, astro-ph/0411029.

[63]  E. Tolstoy,et al.  Stellar Chemical Signatures and Hierarchical Galaxy Formation , 2004, astro-ph/0406120.

[64]  A. Chieffi,et al.  Explosive Yields of Massive Stars from Z = 0 to Z = Z☉ , 2004, astro-ph/0402625.

[65]  Roma,et al.  The Sgr dSph hosts a metal-rich population , 2003, astro-ph/0310872.

[66]  R. Rich,et al.  Constraints on the Origin of Manganese from the Composition of the Sagittarius Dwarf Spheroidal Galaxy and the Galactic Bulge , 2003 .

[67]  M. F. Skrutskie,et al.  A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. I. Morphology of the Sagittarius Core and Tidal Arms , 2003, astro-ph/0304198.

[68]  M. Shetrone,et al.  VLT/UVES Abundances in Four Nearby Dwarf Spheroidal Galaxies. II. Implications for Understanding Galaxy Evolution , 2002, astro-ph/0211168.

[69]  M. Shetrone,et al.  VLT/UVES Abundances in Four Nearby Dwarf Spheroidal Galaxies. I. Nucleosynthesis and Abundance Ratios , 2002, astro-ph/0211167.

[70]  A. Dolphin Numerical methods of star formation history measurement and applications to seven dwarf spheroidals , 2001, astro-ph/0112331.

[71]  M. Shetrone,et al.  Abundance Patterns in the Draco, Sextans, and Ursa Minor Dwarf Spheroidal Galaxies , 2000, astro-ph/0009505.

[72]  R. Ibata,et al.  Galactic Halo Substructure in the Sloan Digital Sky Survey: The Ancient Tidal Stream from the Sagittarius Dwarf Galaxy , 2000, astro-ph/0004255.

[73]  Koichi Iwamoto,et al.  Nucleosynthesis in Chandrasekhar Mass Models for Type Ia Supernovae and Constraints on Progenitor Systems and Burning-Front Propagation , 1999 .

[74]  M. Mateo DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[75]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[76]  M. Irwin,et al.  A dwarf satellite galaxy in Sagittarius , 1994, Nature.

[77]  B. Tinsley Stellar lifetimes and abundance ratios in chemical evolution , 1979 .

[78]  R. Zinn,et al.  Compositions of halo clusters and the formation of the galactic halo , 1978 .

[79]  I. Iben The surface ratio of n super 14 to c super 12 during helium burning. , 1964 .