Optimal Algorithms for Computing the canonical form of a circular string

An O(log n) time CRCW PRAM algorithm for computing the least lexicographic rotation of a circular string (of length n) over a fixed alphabet is presented here. The logarithmic running time is achieved by using O(nlog n)processors and its space complexity is linear. A second algorithm for unbounded alphabets requires O(log n log log n) units of time, also using O(nlog n) processors.

[1]  Zvi Galil,et al.  Optimal parallel algorithms for string matching , 1984, STOC '84.

[2]  Yossi Shiloach,et al.  Fast Canonization of Circular Strings , 1981, J. Algorithms.

[3]  Selim G. Akl,et al.  An Improved Algorithm to Check for Polygon Similarity , 1978, Inf. Process. Lett..

[4]  Kellogg S. Booth,et al.  Lexicographically Least Circular Substrings , 1980, Inf. Process. Lett..

[5]  Donald E. Knuth,et al.  Fast Pattern Matching in Strings , 1977, SIAM J. Comput..

[6]  Jean Pierre Duval,et al.  Factorizing Words over an Ordered Alphabet , 1983, J. Algorithms.