Multiple electromagnetic scattering from a cluster of spheres

A method for calculating the electromagnetic scattering properties of a cluster of spheres of arbitrary radii and (possibly complex) refractive indexes is proposed. The approach takes proper account of multiple scattering effects and does not require any approximation except for the truncation of the multipolar expansions describing the scattered field. The convergence of the expansions is tested through the application to the simple but significant system of two spheres with varying interparticle separation.

[1]  M. Lax MULTIPLE SCATTERING OF WAVES. II. THE EFFECTIVE FIELD IN DENSE SYSTEMS , 1952 .

[2]  Keith H. Johnson ``Multiple-Scattering'' Model for Polyatomic Molecules , 1966 .

[3]  P. Waterman,et al.  SYMMETRY, UNITARITY, AND GEOMETRY IN ELECTROMAGNETIC SCATTERING. , 1971 .

[4]  S. Levine,et al.  Scattering of electromagnetic waves by two equal spherical particles , 1968 .

[5]  S. Stein ADDITION THEOREMS FOR SPHERICAL WAVE FUNCTIONS , 1961 .

[6]  V. Twersky Coherent electromagnetic waves in pair‐correlated random distributions of aligned scatterers , 1978 .

[7]  P. Denti,et al.  Electromagnetic scattering by a cluster of spheres. , 1979, Applied optics.

[8]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[9]  S. Ström,et al.  Matrix formulation of acoustic scattering from an arbitrary number of scatterers , 1974 .

[10]  A. Mal,et al.  Elastic waves in a fiber-reinforced composite , 1974 .

[11]  J. Keller,et al.  Elastic, Electromagnetic, and Other Waves in a Random Medium , 1964 .

[12]  J. Keller,et al.  Refractive Index, Attenuation, Dielectric Constant, and Permeability for Waves in a Polarizable Medium , 1967 .

[13]  Ajit K. Mal,et al.  Longitudinal shear waves in a fiber-reinforced composite , 1973 .

[14]  P. Waterman,et al.  MULTIPLE SCATTERING OF WAVES , 1961 .

[15]  Lord Rayleigh F.R.S. X. On the electromagnetic theory of light , 1881 .

[16]  V. Varadan,et al.  Scattering of acoustic waves by elastic and viscoelastic obstacles immersed in a fluid , 1980 .

[17]  I. P. Batra,et al.  Electronic structure calculations for large planar molecules by SCF‐scattered wave method , 1973 .

[18]  V. Twersky,et al.  On Scattering and Reflection of Sound by Rough Surfaces , 1957 .

[19]  P. Debye,et al.  Zerstreuung von Röntgenstrahlen , 1915 .

[20]  P. Denti,et al.  An addition theorem for vector Helmholtz harmonics , 1980 .

[21]  P. Waterman,et al.  Multiple Scattering of Waves. II. ``Hole Corrections'' in the Scalar Case , 1964 .

[22]  O. Cruzan Translational addition theorems for spherical vector wave functions , 1962 .

[23]  Philip J. Wyatt,et al.  Scattering of Electromagnetic Plane Waves from Inhomogeneous Spherically Symmetric Objects , 1962 .

[24]  A. Mal,et al.  Dynamic elastic moduli of a suspension of imperfectly bonded spheres , 1974, Mathematical Proceedings of the Cambridge Philosophical Society.

[25]  C. Roberts,et al.  Slip line and dislocation structures in fatigued copper , 1965 .

[26]  J. A. Gaunt A Theory of Hartree's Atomic Fields , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[27]  M. Kerker,et al.  Applicability of Rayleigh–Gans Scattering to Spherical Particles , 1963 .

[28]  V. K. Varadan,et al.  Coherent electromagnetic wave propagation through randomly distributed dielectric scatterers , 1979 .

[29]  Staffan Ström,et al.  T-matrix formulation of electromagnetic scattering from multilayered scatterers , 1974 .

[30]  M. Bacon CLASSICAL-PATH CALCULATION OF THE IMPACT-BROADENING OPERATOR FOR THE STARK BROADENING OF H/sub $alpha$/. , 1971 .

[31]  M. E. Rose Elementary Theory of Angular Momentum , 1957 .

[32]  P. Barber,et al.  Rayleigh-Gans-Debye applicability to scattering by nonspherical particles. , 1978, Applied optics.

[33]  V. Twersky,et al.  Coherent scalar field in pair‐correlated random distributions of aligned scatterers , 1977 .

[34]  G. Goertzel,et al.  Some Mathematical Methods of Physics , 1963 .

[35]  V. Twersky On Scattering of Waves by Random Distributions. I. Free‐Space Scatterer Formalism , 1962 .

[36]  R. Nozawa Bipolar Expansion of Screened Coulomb Potentials, Helmholtz' Solid Harmonics, and their Addition Theorems , 1966 .

[37]  L. Foldy,et al.  The Multiple Scattering of Waves. I. General Theory of Isotropic Scattering by Randomly Distributed Scatterers , 1945 .

[38]  B. Peterson,et al.  T matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E(3) , 1973 .