The Application of an HMM-based Clustering Method to Speaker Independent Word Recognition

In this paper we present a clustering procedure based on the use of HMM in order to get multiple statistical models which can well absorb the variants of each speaker with different ways of saying words. The HMM-clustered models obtained from the developed technique are applied to the speaker independent isolated word recognition. The HMM clustering method splits off all observation sequences with poor likelihood scores which fall below threshold from the training set and create a new model out of the observation sequences in the new cluster. Clustering is iterated by classifying each observation sequence as belonging to the cluster whose model has the maximum likelihood score. If any clutter has changed from the previous iteration the model in that cluster is reestimated by using the Baum-Welch reestimation procedure. Therefore, this method is more efficient than the conventional template-based clustering technique due to the integration capability of the clustering procedure and the parameter estimation. Experimental data show that the HMM-based clustering procedure leads to performance improvements over the conventional template-based clustering method and improvements over the single HMM method for the case of recognition of the isolated korean digits.