A learning drift homotopy particle filter

In this paper, we design a learning drift homotopy particle filter algorithm. We employ the drift homotopy technique in the extra Markov Chain Monte Carlo move after the resampling step of the generic particle filter algorithm to efficiently resolve the degeneracy of the algorithm. In this work, we use the effective sample size as a learning parameter to control the levels of drift homotopy which need to be considered in each time step. The proposed algorithm adjusts the number of levels of drift homotopy and reduces its computational time without undermining the accuracy of estimation. We test the algorithm on two synthetic problems, a partially observed diffusion in a double well potential and a multi-target tracking setting.

[1]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[2]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[3]  Fred Daum,et al.  Particle flow for nonlinear filters with log-homotopy , 2008, SPIE Defense + Commercial Sensing.

[4]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[5]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[6]  Ioannis D. Schizas,et al.  Distributed spatio-temporal association and tracking of multiple targets using multiple sensors , 2015, IEEE Transactions on Aerospace and Electronic Systems.

[7]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[8]  Erik Blasch Modeling intent for a target tracking and identification scenario , 2004, SPIE Defense + Commercial Sensing.

[9]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[10]  Vasileios Maroulas,et al.  Improved particle filters for multi-target tracking , 2012, J. Comput. Phys..

[11]  Petar M. Djuric,et al.  Resampling Algorithms for Particle Filters: A Computational Complexity Perspective , 2004, EURASIP J. Adv. Signal Process..

[12]  G. Eyink,et al.  Accelerated Monte Carlo for Optimal Estimation of Time Series , 2005 .

[13]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[14]  Vasileios Maroulas,et al.  Online filtering and estimation for dynamic spatiotemporal processes with data from an exponential family , 2015 .

[15]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[16]  Jonathan Weare,et al.  Particle filtering with path sampling and an application to a bimodal ocean current model , 2009, J. Comput. Phys..

[17]  Ioannis D. Schizas,et al.  Drift homotopy particle filter for non-Gaussian multi-target tracking , 2014, 17th International Conference on Information Fusion (FUSION).

[18]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[19]  Li Bai,et al.  Multiple Kernel Learning for vehicle detection in wide area motion imagery , 2012, 2012 15th International Conference on Information Fusion.

[20]  Y. Bar-Shalom Tracking and data association , 1988 .

[21]  Vasileios Maroulas,et al.  Tracking spawning objects , 2013 .

[22]  Kai Kang,et al.  Drift homotopy methods for a non-Gaussian filter , 2013, Proceedings of the 16th International Conference on Information Fusion.

[23]  Li Bai,et al.  Minimum error bounded efficient ℓ1 tracker with occlusion detection , 2011, CVPR 2011.

[24]  Haikady N. Nagaraja,et al.  Inference in Hidden Markov Models , 2006, Technometrics.

[25]  Erik Blasch,et al.  Static Versus Dynamic Data Information Fusion Analysis Using DDDAS for Cyber Security Trust , 2014, ICCS.

[26]  Mauro Dell'Amico,et al.  Assignment Problems , 1998, IFIP Congress: Fundamentals - Foundations of Computer Science.