Palindrome pattern matching

A palindrome is a string that reads the same forward and backward. For a string x, let Pals(x) be the set of all maximal palindromes of x, where each maximal palindrome in Pals(x) is encoded by a pair (c,r) of its center c and its radius r. Given a text t of length n and a pattern p of length m, the palindrome pattern matching problem is to compute all positions i of t such that Pals(p)=Pals(t[i:i+m-1]). We present linear-time algorithms to solve this problem.

[1]  Srecko Brlek,et al.  On The Palindromic Complexity Of Infinite Words , 2004, Int. J. Found. Comput. Sci..

[2]  Kuan-Yu Chen,et al.  Finding All Approximate Gapped Palindromes , 2009, ISAAC.

[3]  Hideo Bannai,et al.  Counting and Verifying Maximal Palindromes , 2010, SPIRE.

[4]  D. J. Wheeler,et al.  A Block-sorting Lossless Data Compression Algorithm , 1994 .

[5]  Gwénaël Richomme,et al.  Counting distinct palindromes in a word in linear time , 2010, Inf. Process. Lett..

[6]  Glenn K. Manacher,et al.  A New Linear-Time ``On-Line'' Algorithm for Finding the Smallest Initial Palindrome of a String , 1975, JACM.

[7]  Dan Gusfield,et al.  Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .

[8]  Zoltán Kása,et al.  Total palindrome complexity of finite words , 2010, Discret. Math..

[9]  Gregory Kucherov,et al.  Searching for gapped palindromes , 2008, Theor. Comput. Sci..

[10]  Brenda S. Baker Parameterized Pattern Matching: Algorithms and Applications , 1996, J. Comput. Syst. Sci..

[11]  Jean-Paul Allouche,et al.  Palindrome complexity , 2003, Theor. Comput. Sci..

[12]  Andrea Frosini,et al.  Reconstructing words from a fixed palindromic length sequence , 2008, IFIP TCS.

[13]  Luca Q. Zamboni,et al.  Palindromic richness , 2008, Eur. J. Comb..

[14]  Giuseppe Pirillo,et al.  Episturmian words and some constructions of de Luca and Rauzy , 2001, Theor. Comput. Sci..

[15]  Antonio Restivo,et al.  Burrows-Wheeler transform and palindromic richness , 2009, Theor. Comput. Sci..

[16]  Michael L. Fredman,et al.  Surpassing the Information Theoretic Bound with Fusion Trees , 1993, J. Comput. Syst. Sci..

[17]  Dan E. Willard New Trie Data Structures Which Support Very Fast Search Operations , 1984, J. Comput. Syst. Sci..

[18]  Dan Gusfield,et al.  Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .

[19]  Peter Weiner,et al.  Linear Pattern Matching Algorithms , 1973, SWAT.

[20]  Esko Ukkonen,et al.  On-line construction of suffix trees , 1995, Algorithmica.