Periodic three-dimensional mesh generation for particle reinforced composites with application to metal matrix composites

A method for the generation of three-dimensional model microstructures resembling particle reinforced composites is developed based on the periodic Voronoi tessellation. The algorithm allows for the generation of arbitrary particle volume fractions and produces periodic geometries based on the erosion procedure suggested by Christoffersen (1983). A technique for the creation of high quality periodic spatial discretizations of the particle systems for application with the finite element method is described in detail. The developed procedure is extensively applied to metal ceramic composites (Al-SiCp) at volume fractions ranging from 10 to 80%. The elastic and thermo-elastic material properties are investigated and the effect of higher statistical moments (see, e.g., Torquato, 2002), i.e. of the particle shape and relative position, is evaluated in terms of constraint point sets used in the generation of the random microstructures.

[1]  Klaus Gärtner,et al.  Meshing Piecewise Linear Complexes by Constrained Delaunay Tetrahedralizations , 2005, IMR.

[2]  Rhonald C. Lua,et al.  Image-based finite element mesh construction for material microstructures , 2008 .

[3]  Dinesh Manocha,et al.  Applied Computational Geometry Towards Geometric Engineering , 1996, Lecture Notes in Computer Science.

[4]  S. Prabu,et al.  Microstructure-based finite element analysis of failure prediction in particle-reinforced metal–matrix composite , 2008 .

[5]  Zvi Hashin,et al.  Effective thermal expansion coefficients and specific heats of composite materials , 1970 .

[6]  Yousef Saad,et al.  Multilevel Preconditioners Constructed From Inverse-Based ILUs , 2005, SIAM J. Sci. Comput..

[7]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[8]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[9]  Somnath Ghosh,et al.  3D polycrystalline microstructure reconstruction from FIB generated serial sections for FE analysis , 2007 .

[10]  J. Willis,et al.  Variational and Related Methods for the Overall Properties of Composites , 1981 .

[11]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[12]  S. Kurtz,et al.  Simulation of material microstructure using a 3D voronoi tesselation: Calculation of effective thermal expansion coefficient of polycrystalline materials , 1994 .

[13]  Ingemar Ragnemalm,et al.  Fast erosion and dilation by contour processing and thresholding of distance maps , 1992, Pattern Recognit. Lett..

[14]  Dominique Jeulin,et al.  Apparent and effective physical properties of heterogeneous materials: Representativity of samples of two materials from food industry , 2006 .

[15]  H. J. Kim,et al.  Computational studies on high-stiffness, high-damping SiC-InSn particulate reinforced composites , 2002 .

[16]  A. Needleman,et al.  Fundamentals of metal-matrix composites , 1993 .

[17]  Wei Song,et al.  Finite-Element Method , 2012 .

[18]  H. Böhm,et al.  Modeling of the thermal conductivity and thermomechanical behavior of diamond reinforced composites , 2008 .

[19]  K. Chawla,et al.  Metal Matrix Composites , 2006 .

[20]  Amine Ouaar,et al.  Homogenization of two-phase elasto-plastic composite materials and structures: Study of tangent operators, cyclic plasticity and numerical algorithms , 2003 .

[21]  N. Chawla,et al.  Thermal expansion anisotropy in extruded SiC particle reinforced 2080 aluminum alloy matrix composites , 2006 .

[22]  Leslie George Tham,et al.  Finite element modeling of geomaterials using digital image processing , 2003 .

[23]  O. Kraft,et al.  Elastic properties of polycrystalline microcomponents , 2010 .

[24]  Nikhilesh Chawla,et al.  Effect of particle orientation anisotropy on the tensile behavior of metal matrix composites: experiments and microstructure-based simulation , 2005 .

[25]  D. Ingram,et al.  Statistics in Practice , 1983 .

[26]  D. Jeulin,et al.  Finite element simulations of the deformation of fused-cast refractories based on X-Ray computed tomography , 2007 .

[27]  F. Fedorov Theory of Elastic Waves in Crystals , 1968 .

[28]  Stelios Kyriakides,et al.  On the microstructure of open-cell foams and its effect on elastic properties , 2008 .

[29]  A. Mortensen,et al.  Investigation of crack-tip plasticity in high volume fraction particulate metal matrix composites , 2004 .

[30]  R. S. Sidhu,et al.  Three-dimensional visualization and microstructure-based modeling of deformation in particle-reinforced composites , 2006 .

[31]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[32]  Anthony Roberts,et al.  Elastic moduli of model random three-dimensional closed-cell cellular solids , 2000 .

[33]  Frank Mücklich,et al.  Statistical Analysis of Microstructures in Materials Science , 2000 .

[34]  E. Schnack,et al.  Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations , 2009 .

[35]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[36]  D. Jeulin,et al.  Intergranular and intragranular behavior of polycrystalline aggregates. Part 1: F.E. model , 2001 .

[37]  H. Böhm,et al.  Effect of diamond shapes and associated thermal boundary resistance on thermal conductivity of diamond-based composites , 2007 .

[38]  Somnath Ghosh,et al.  3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system , 2006 .

[39]  Nikhilesh Chawla,et al.  Three-dimensional (3D) microstructure visualization and finite element modeling of the mechanical behavior of SiC particle reinforced aluminum composites , 2004 .