Precise characterisation of monoclonal antibodies to the C-terminal region of p53 protein using the PEPSCAN ELISA technique and a new non-radioactive gel shift assay.

[1]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[2]  K. Novak Tying-up tuberculosis , 2000, Nature Medicine.

[3]  E. Paleček,et al.  Effect of transition metals on binding of p53 protein to supercoiled DNA and to consensus sequence in DNA fragments , 1999, Oncogene.

[4]  L. Bracco,et al.  Restoration of transcriptional activity of p53 mutants in human tumour cells by intracellular expression of anti-p53 single chain Fv fragments , 1999, Oncogene.

[5]  K. Aldape,et al.  An oncogenic form of p53 confers a dominant, gain-of-function phenotype that disrupts spindle checkpoint control. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[6]  T. Jovin,et al.  Tumor suppressor protein p53 binds preferentially to supercoiled DNA , 1997, Oncogene.

[7]  W. Deppert,et al.  DNA-conformation is an important determinant of sequence-specific DNA binding by tumor suppressor p53 , 1997, Oncogene.

[8]  B. Groner,et al.  Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain , 1997, Nature Medicine.

[9]  N. Hynes,et al.  Characterization of scFv-421, a single-chain antibody targeted to p53. , 1997, Biochemical and biophysical research communications.

[10]  D. Lane,et al.  Small peptides activate the latent sequence-specific DNA binding function of p53 , 1995, Cell.

[11]  G. Stark,et al.  p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[12]  D. Lane,et al.  Two Distinct Signaling Pathways Activate the Latent DNA Binding Function of p53 in a Casein Kinase II-independent Manner (*) , 1995, Journal of Biological Chemistry.

[13]  D. Lane,et al.  Characterisation of epitopes on human p53 using phage-displayed peptide libraries: insights into antibody-peptide interactions. , 1995, Journal of molecular biology.

[14]  G. Marius Clore,et al.  Refined solution structure of the oligomerization domain of the tumour suppressor p53 , 1995, Nature Structural Biology.

[15]  N. Pavletich,et al.  Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms , 1995, Science.

[16]  J. Kovarik,et al.  p53 derived from human tumour cell lines and containing distinct point mutations can be activated to bind its consensus target sequence. , 1995, Oncogene.

[17]  J. Kovarik,et al.  Conformational changes in p53 analysed using new antibodies to the core DNA binding domain of the protein. , 1995, Oncogene.

[18]  A. Meyer,et al.  Mutations in p53 produce a common conformational effect that can be detected with a panel of monoclonal antibodies directed toward the central part of the p53 protein. , 1994, Oncogene.

[19]  D. Lane,et al.  Allosteric activation of latent p53 tetramers , 1994, Current Biology.

[20]  T. Soussi,et al.  Linear antigenic sites defined by the B-cell response to human p53 are localized predominantly in the amino and carboxy-termini of the protein. , 1994, Oncogene.

[21]  D. Lane,et al.  Clinical utility of the immunocytochemical detection of p53 protein in cytological specimens. , 1994, Cancer research.

[22]  A. Levine,et al.  Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. , 1994, Genes & development.

[23]  K. Kinzler,et al.  Sequence-specific transcriptional activation is essential for growth suppression by p53. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[24]  J. E. Stenger,et al.  p53 domains: identification and characterization of two autonomous DNA-binding regions. , 1993, Genes & development.

[25]  X. Chen,et al.  A proteolytic fragment from the central region of p53 has marked sequence-specific DNA-binding activity when generated from wild-type but not from oncogenic mutant p53 protein. , 1993, Genes & development.

[26]  T. Halazonetis,et al.  Conformational shifts propagate from the oligomerization domain of p53 to its tetrameric DNA binding domain and restore DNA binding to select p53 mutants. , 1993, The EMBO journal.

[27]  C. Pabo,et al.  The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot spots. , 1993, Genes & development.

[28]  D. Lane,et al.  Activation of the cryptic DNA binding function of mutant forms of p53. , 1993, Nucleic acids research.

[29]  V. Rotter,et al.  Wild-type but not mutant p53 can repress transcription initiation in vitro by interfering with the binding of basal transcription factors to the TATA motif. , 1993, Oncogene.

[30]  C. Purdie,et al.  Thymocyte apoptosis induced by p53-dependent and independent pathways , 1993, Nature.

[31]  Scott W. Lowe,et al.  p53 is required for radiation-induced apoptosis in mouse thymocytes , 1993, Nature.

[32]  T. Halazonetis,et al.  Wild‐type p53 adopts a ‘mutant’‐like conformation when bound to DNA. , 1993, The EMBO journal.

[33]  J. Bartek,et al.  Immunohtstochemical analysis of the p53 oncoprotein on paraffin sections using a series of novel monoclonal antibodies , 1993, The Journal of pathology.

[34]  D. Lane,et al.  Regulation of the specific DNA binding function of p53 , 1992, Cell.

[35]  E. Appella,et al.  Human wild-type p53 adopts a unique conformational and phosphorylation state in vivo during growth arrest of glioblastoma cells. , 1992, Oncogene.

[36]  P. Meltzer,et al.  Amplification of a gene encoding a p53-associated protein in human sarcomas , 1992, Nature.

[37]  J. Bartek,et al.  An immunochemical analysis of the human nuclear phosphoprotein p53. New monoclonal antibodies and epitope mapping using recombinant p53. , 1992, Journal of immunological methods.

[38]  K. Kinzler,et al.  Definition of a consensus binding site for p53 , 1992, Nature Genetics.

[39]  S. Fields,et al.  Presence of a potent transcription activating sequence in the p53 protein. , 1990, Science.

[40]  D. Lane,et al.  Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. , 1990, The EMBO journal.

[41]  J. Milner,et al.  The cellular tumour antigen p53: evidence for transformation-related, immunological variants of p53. , 1986, Virology.

[42]  J. Yewdell,et al.  Monoclonal antibody analysis of p53 expression in normal and transformed cells , 1986, Journal of virology.

[43]  J. Milner Different forms of p53 detected by monoclonal antibodies in non-dividing and dividing lymphocytes , 1984, Nature.

[44]  D. Pim,et al.  Monoclonal antibodies specific for simian virus 40 tumor antigens , 1981, Journal of virology.

[45]  J. Kovarik,et al.  Epitope analysis of the human p53 tumour suppressor protein. , 1997, Folia biologica.

[46]  Thierry Soussi,et al.  Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation , 1996, Nucleic Acids Res..

[47]  J. Bartek,et al.  Analysis of p53 expression in human tumours: an antibody raised against human p53 expressed in Escherichia coli. , 1992, Journal of cell science.

[48]  E. Harlow,et al.  Antibodies: A Laboratory Manual , 1988 .