Ceramics for the Future: Advanced Millimeter-Wave Multilayer Multichip Module Integration and Packaging

The advantages of higher-frequency operation, such as wider bandwidth and finer spatial and temporal resolution, have led to increased interest in the use of millimeter-waves (mmWs) in both commercial and military applications-covering, in particular, areas ranging from high-speed wireless communication (including wireless local area networking, wireless gigabit communication, sensor networks, and fifthgeneration systems) to space science to security [1]-[5]. For biological and health applications, mmW imaging offers a superior, safer, and lower-cost alternative to conventional techniques [6], [7].

[1]  P. Young,et al.  Millimeter-wave substrate integrated waveguides and filters in photoimageable thick-film technology , 2005, IEEE Transactions on Microwave Theory and Techniques.

[2]  Y. Yoon,et al.  A compact lumped-element lowpass filter using low temperature cofired ceramic technology , 2003 .

[3]  J. Laskar,et al.  Liquid crystal polymer-based integrated passive development for RF applications , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[4]  I. Robertson,et al.  Modelling and design of high performance capacitors for CPW multi-chip modules , 2011, 2011 41st European Microwave Conference.

[5]  J.C. Batchelor,et al.  Millimeter Wave Substrate Integrated Waveguide Antennas: Design and Fabrication Analysis , 2009, IEEE Transactions on Advanced Packaging.

[6]  Manos M. Tentzeris,et al.  Inkjet-printed antennas, sensors and circuits on paper substrate , 2013 .

[7]  I. Robertson,et al.  Experimental study of the effect of ground width for millimetre-wave multilayer coplanar waveguides in ceramic multichip module technology , 2012 .

[8]  Eric Beyne,et al.  MULTI-LAYER THIN-FILM MCM-D FOR THE INTEGRATION OF HIGH PERFORMANCE WIRELESS FRONT-END SYSTEMS , 2001 .

[9]  H. Happy,et al.  Design of narrow-band DBR planar filters in Si-BCB technology for millimeter-wave applications , 2004, IEEE Transactions on Microwave Theory and Techniques.

[10]  I. D. Robertson,et al.  Advanced Multilayer Thick-Film System-on-Package Technology for Miniaturized and High Performance CPW Microwave Passive Components , 2011, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[11]  J. Laskar,et al.  RF-system-on-package (SOP) for wireless communications , 2002, IEEE Microwave Magazine.

[12]  Ian D. Robertson,et al.  Design and performance of a 60-GHz multi-chip module receiver employing substrate integrated waveguides , 2007 .

[13]  T. Vaha-Heikkila,et al.  LTCC 3D integration platform for microwave and millimeter wave modules , 2012, 2012 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT).

[14]  H. Reichl,et al.  Wafer Level Processing of Integrated Passive Components Using Polyimide or Polybenzoxazole/Copper Multilayer Technology , 2010, IEEE Transactions on Advanced Packaging.

[15]  Manos M. Tentzeris,et al.  Fabrication of Fully Inkjet-Printed Vias and SIW Structures on Thick Polymer Substrates , 2016, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[16]  Joy Laskar,et al.  Gigabit wireless: system-on-a-package technology , 2004, Proceedings of the IEEE.

[17]  Paul R. Young,et al.  Photoimageable thick-film millimetre-wave metal-pipe rectangular waveguides , 2001 .

[18]  Gabriel M. Rebeiz,et al.  Micromachined W-band filters , 1996 .

[19]  Kamal K. Samanta,et al.  Ceramic based novel multilayer and miniaturized RF/millimetre-wave components and highly integrated mm-wave modules , 2014, 2014 IEEE International Wireless Symposium (IWS 2014).

[20]  I. Robertson,et al.  Characterisation of TFMS and CPW Lines and Interconnections up to 100 GHz in Multilayer Photoimageable Thick Film Technology , 2006, 2006 European Microwave Conference.

[21]  Kamal K. Samanta,et al.  Pushing the Envelope for Heterogeneity: Multilayer and 3-D Heterogeneous Integrations for Next Generation Millimeter- and Submillimeter-Wave Circuits and Systems , 2017, IEEE Microwave Magazine.

[22]  Ian D. Robertson,et al.  Dielectric thickness and ground width effect on multilayer coplanar components and circuits for ceramic multichip modules , 2012 .

[23]  Ke Wu,et al.  Review of substrate-integrated waveguide circuits and antennas , 2011 .

[24]  Ian D. Robertson,et al.  Characterisation and application of embedded lumped elements in multilayer advanced thick-film multichip-module technology , 2012 .

[25]  Ke Wu,et al.  Photoimageable Thick-Film Micro-Coaxial Line for DC-to-Millimeter-Wave Broadband Applications , 2014, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[26]  G. Dambrine,et al.  Wide- and narrow-band bandpass coplanar filters in the W-frequency band , 2003 .

[27]  Goutam Chattopadhyay,et al.  Submillimeter-Wave Radar: Solid-State System Design and Applications , 2014, IEEE Microwave Magazine.

[28]  Hwan-Hee Lee,et al.  Characterization of Fully Embedded RF Inductors in Organic SOP Technology , 2009, IEEE Transactions on Advanced Packaging.

[29]  Theodore S. Rappaport,et al.  Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges , 2014, Proceedings of the IEEE.

[30]  Gye-An Lee,et al.  Design and analysis of embedded inductor on low cost multilayer laminate MCM technology , 2003, Electrical Performance of Electrical Packaging (IEEE Cat. No. 03TH8710).

[31]  Kamal K. Samanta,et al.  High Performance Compact Multilayer Circular Spiral Inductors in Advanced Photoimageable Technology , 2014, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[32]  Kamal K. Samanta,et al.  Substrate-Integrated-Waveguide E-Plane 3-dB Power-Divider/Combiner Based on Resistive Layers , 2017, IEEE Transactions on Microwave Theory and Techniques.

[33]  Kamal K. Samanta,et al.  Advanced photoimagable ceramic based technology: Substrate integrated waveguides and passives to multilayer cost-effective MCMs at MM-wave and beyond , 2013, IEEE MTT-S International Microwave and RF Conference.

[34]  Ruey-Beei Wu,et al.  60-GHz Four-Element Phased-Array Transmit/Receive System-in-Package Using Phase Compensation Techniques in 65-nm Flip-Chip CMOS Process , 2012, IEEE Transactions on Microwave Theory and Techniques.

[35]  I. Robertson,et al.  Ultrawideband characterisation of photoimageable thick film materials for microwave and millimeter-wave design , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[36]  Gabriel M. Rebeiz,et al.  Low loss micromachined filters for millimeter-wave telecommunication systems , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[37]  J. Papapolymerou,et al.  3-D-integrated RF and millimeter-wave functions and modules using liquid crystal polymer (LCP) system-on-package technology , 2004, IEEE Transactions on Advanced Packaging.

[38]  Kamal K. Samanta,et al.  Surfing the Millimeter-Wave: Multilayer Photoimageable Technology for High Performance SoP Components in Systems at Millimeter-Wave and Beyond , 2016, IEEE Microwave Magazine.

[39]  Ian D. Robertson,et al.  An embedded 60‐GHz planar bandpass filter in multilayer advanced thick‐film system‐in‐package technology , 2011 .

[40]  H. H. Meinel,et al.  Commercial applications of millimeterwaves: history, present status, and future trends , 1995 .

[41]  C. Person,et al.  New millimeter wave packaged antenna array on IPD technology , 2010, 2010 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF).

[42]  Kamal K. Samanta,et al.  PA Thermal Management and Packaging: Wideband PA and Packaging, History, and Recent Advances: Part 2 , 2016, IEEE Microwave Magazine.

[43]  P Pursula,et al.  60-GHz Millimeter-Wave Identification Reader on 90-nm CMOS and LTCC , 2011, IEEE Transactions on Microwave Theory and Techniques.

[44]  A. Sutono,et al.  High Q LTCC-based passive library for wireless system-on-package (SOP) module development , 2001 .

[45]  Steven Brebels,et al.  Multilayer thin-film MCM-D for the integration of high-performance RF and microwave circuits , 2001 .

[46]  I. Robertson,et al.  Surfing the Millimeter-Wave , 2016 .

[47]  I.D. Robertson,et al.  Multilayer thick-film photoimageable technology for 60 GHz system-in-package , 2008, 2008 Asia-Pacific Microwave Conference.

[48]  H. Uchimura,et al.  Development of the "laminated waveguide" , 1998, IMS 1998.

[49]  Barry K. Gilbert,et al.  The use of laminate multichip modules for the packaging of 9-GHz digital multichip circuits , 2002 .

[50]  I. Robertson,et al.  Advanced multilayer thick-film technology for cost-effective millimetre-wave multi-chip modules , 2005, High Frequency Postgraduate Student Colloquium, 2005.

[51]  R. Funck,et al.  Mixed technologies for microwave multichip module (MMCM) applications-a review , 1995, IEEE NTC,Conference Proceedings Microwave Systems Conference.

[52]  Ke Wu,et al.  Single-substrate integration technique of planar circuits and waveguide filters , 2003 .