Multigrid analysis for the time dependent Stokes problem

Certain implicit time stepping procedures for the incompressible Stokes or Navier-Stokes equations lead to a singular-perturbed Stokes type problem at each time step. The paper presents a convergence analysis of a geometric multigrid solver for the system of linear algebraic equations resulting from the disretization of the problem using a finite element method. Several smoothing iterative methods are considered: a smoother based on distributive iterations, the Braess-Sarazin and inexact Uzawa smoother. Convergence analysis is based on smoothing and approximation properties in special norms. A robust (independent of time step and mesh parameter) estimate is proved for the two-grid and multigrid W-cycle convergence factors.

[1]  Jinchao Xu,et al.  The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids , 1996, Computing.

[2]  Ahmed Sameh,et al.  On an iterative method for saddle point problems , 1998 .

[3]  Zvi Ziegler,et al.  Approximation theory and applications , 1983 .

[4]  Sandro Manservisi,et al.  Numerical Analysis of Vanka-Type Solvers for Steady Stokes and Navier-Stokes Flows , 2006, SIAM J. Numer. Anal..

[5]  D. Braess,et al.  An efficient smoother for the Stokes problem , 1997 .

[6]  R. Verfürth A Multilevel Algorithm for Mixed Problems , 1984 .

[7]  Panayot S. Vassilevski,et al.  Interior penalty preconditioners for mixed finite element approximations of elliptic problems , 1996, Math. Comput..

[8]  Xue-Cheng Tai,et al.  A Robust Finite Element Method for Darcy-Stokes Flow , 2002, SIAM J. Numer. Anal..

[9]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[10]  Kent-André Mardal,et al.  Uniform preconditioners for the time dependent Stokes problem , 2004, Numerische Mathematik.

[11]  Maxim A. Olshanskii,et al.  Effective preconditioning of Uzawa type schemes for a generalized Stokes problem , 2000, Numerische Mathematik.

[12]  Monique Dauge,et al.  Stationary Stokes and Navier-Stokes systems on two-or three-dimensional domains with corners , 1989 .

[13]  Wolfgang Dahmen,et al.  A cascadic multigrid algorithm for the Stokes equations , 1999, Numerische Mathematik.

[14]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[15]  Joseph E. Pasciak,et al.  On the stability of the L2 projection in H1(Omega) , 2002, Math. Comput..

[16]  Tuomo Rossi,et al.  Two Iterative Methods for Solving the Stokes Problem , 1993 .

[17]  Louis J. Durlofsky,et al.  Analysis of the Brinkman equation as a model for flow in porous media , 1987 .

[18]  Joachim Schöberl,et al.  On Schwarz-type Smoothers for Saddle Point Problems , 2003, Numerische Mathematik.

[19]  A. Wathen,et al.  Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .

[20]  O. Pironneau,et al.  Error estimates for finite element method solution of the Stokes problem in the primitive variables , 1979 .

[21]  Walter Zulehner,et al.  A Class of Smoothers for Saddle Point Problems , 2000, Computing.

[22]  R. Bank,et al.  A class of iterative methods for solving saddle point problems , 1989 .

[23]  H. Elman Multigrid and Krylov subspace methods for the discrete Stokes equations , 1994 .

[24]  W. Marsden I and J , 2012 .

[25]  Maxim A. Olshanskii,et al.  On the Convergence of a Multigrid Method for Linear Reaction-Diffusion Problems , 2000, Computing.

[26]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[27]  Rob Stevenson,et al.  Nonconforming finite elements and the cascadic multi-grid method , 2002, Numerische Mathematik.

[28]  Peter Schlattmann,et al.  Theory and Algorithms , 2009 .

[29]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[30]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[31]  Stefan Turek,et al.  Efficient Solvers for Incompressible Flow Problems - An Algorithmic and Computational Approach , 1999, Lecture Notes in Computational Science and Engineering.

[32]  P. Wesseling,et al.  Geometric multigrid with applications to computational fluid dynamics , 2001 .

[33]  Susanne C. Brenner,et al.  A nonconforming multigrid method for the stationary Stokes equations , 1990 .

[34]  V. V. Shaidurov,et al.  Multigrid Methods for Finite Elements , 1995 .

[35]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[36]  J. Pasciak,et al.  Iterative techniques for time dependent Stokes problems , 1997 .

[37]  Maxim A. Olshanskii,et al.  Uniform preconditioners for a parameter dependent saddle point problem with application to generalized Stokes interface equations , 2006, Numerische Mathematik.

[38]  S. Vanka Block-implicit multigrid solution of Navier-Stokes equations in primitive variables , 1986 .

[39]  Xiaoping,et al.  UNIFORMLY-STABLE FINITE ELEMENT METHODS FOR DARCY-STOKES-BRINKMAN MODELS , 2008 .

[40]  Arnold Reusken,et al.  A comparative study of efficient iterative solvers for generalized Stokes equations , 2008, Numer. Linear Algebra Appl..

[41]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .