Multigrid analysis for the time dependent Stokes problem
暂无分享,去创建一个
[1] Jinchao Xu,et al. The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids , 1996, Computing.
[2] Ahmed Sameh,et al. On an iterative method for saddle point problems , 1998 .
[3] Zvi Ziegler,et al. Approximation theory and applications , 1983 .
[4] Sandro Manservisi,et al. Numerical Analysis of Vanka-Type Solvers for Steady Stokes and Navier-Stokes Flows , 2006, SIAM J. Numer. Anal..
[5] D. Braess,et al. An efficient smoother for the Stokes problem , 1997 .
[6] R. Verfürth. A Multilevel Algorithm for Mixed Problems , 1984 .
[7] Panayot S. Vassilevski,et al. Interior penalty preconditioners for mixed finite element approximations of elliptic problems , 1996, Math. Comput..
[8] Xue-Cheng Tai,et al. A Robust Finite Element Method for Darcy-Stokes Flow , 2002, SIAM J. Numer. Anal..
[9] F. Thomasset. Finite element methods for Navier-Stokes equations , 1980 .
[10] Kent-André Mardal,et al. Uniform preconditioners for the time dependent Stokes problem , 2004, Numerische Mathematik.
[11] Maxim A. Olshanskii,et al. Effective preconditioning of Uzawa type schemes for a generalized Stokes problem , 2000, Numerische Mathematik.
[12] Monique Dauge,et al. Stationary Stokes and Navier-Stokes systems on two-or three-dimensional domains with corners , 1989 .
[13] Wolfgang Dahmen,et al. A cascadic multigrid algorithm for the Stokes equations , 1999, Numerische Mathematik.
[14] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[15] Joseph E. Pasciak,et al. On the stability of the L2 projection in H1(Omega) , 2002, Math. Comput..
[16] Tuomo Rossi,et al. Two Iterative Methods for Solving the Stokes Problem , 1993 .
[17] Louis J. Durlofsky,et al. Analysis of the Brinkman equation as a model for flow in porous media , 1987 .
[18] Joachim Schöberl,et al. On Schwarz-type Smoothers for Saddle Point Problems , 2003, Numerische Mathematik.
[19] A. Wathen,et al. Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .
[20] O. Pironneau,et al. Error estimates for finite element method solution of the Stokes problem in the primitive variables , 1979 .
[21] Walter Zulehner,et al. A Class of Smoothers for Saddle Point Problems , 2000, Computing.
[22] R. Bank,et al. A class of iterative methods for solving saddle point problems , 1989 .
[23] H. Elman. Multigrid and Krylov subspace methods for the discrete Stokes equations , 1994 .
[24] W. Marsden. I and J , 2012 .
[25] Maxim A. Olshanskii,et al. On the Convergence of a Multigrid Method for Linear Reaction-Diffusion Problems , 2000, Computing.
[26] Wolfgang Hackbusch,et al. Multi-grid methods and applications , 1985, Springer series in computational mathematics.
[27] Rob Stevenson,et al. Nonconforming finite elements and the cascadic multi-grid method , 2002, Numerische Mathematik.
[28] Peter Schlattmann,et al. Theory and Algorithms , 2009 .
[29] M. Fortin,et al. A stable finite element for the stokes equations , 1984 .
[30] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[31] Stefan Turek,et al. Efficient Solvers for Incompressible Flow Problems - An Algorithmic and Computational Approach , 1999, Lecture Notes in Computational Science and Engineering.
[32] P. Wesseling,et al. Geometric multigrid with applications to computational fluid dynamics , 2001 .
[33] Susanne C. Brenner,et al. A nonconforming multigrid method for the stationary Stokes equations , 1990 .
[34] V. V. Shaidurov,et al. Multigrid Methods for Finite Elements , 1995 .
[35] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[36] J. Pasciak,et al. Iterative techniques for time dependent Stokes problems , 1997 .
[37] Maxim A. Olshanskii,et al. Uniform preconditioners for a parameter dependent saddle point problem with application to generalized Stokes interface equations , 2006, Numerische Mathematik.
[38] S. Vanka. Block-implicit multigrid solution of Navier-Stokes equations in primitive variables , 1986 .
[39] Xiaoping,et al. UNIFORMLY-STABLE FINITE ELEMENT METHODS FOR DARCY-STOKES-BRINKMAN MODELS , 2008 .
[40] Arnold Reusken,et al. A comparative study of efficient iterative solvers for generalized Stokes equations , 2008, Numer. Linear Algebra Appl..
[41] P. G. Ciarlet,et al. Basic error estimates for elliptic problems , 1991 .