Three-dimensional imaging of multicomponent ground-penetrating radar data

Scalar imaging algorithms originally developed for the processing of remote sensing measurements (e.g., the synthetic‐aperture radar method) or seismic reflection data (e.g., the Gazdag phase‐shift method) are commonly used for the processing of ground‐penetrating radar (GPR) data. Unfortunately, these algorithms do not account for the radiation characteristics of GPR source and receiver antennas or the vectorial nature of radar waves. We present a new multicomponent imaging algorithm designed specifically for vector electromagnetic‐wave propagation. It accounts for all propagation effects, including the vectorial characteristics of the source and receiver antennas and the polarization of the electromagnetic wavefield. A constant‐offset source‐receiver antenna pair is assumed to overlie a dielectric medium. To assess the performance of the scalar and multicomponent imaging algorithms, we compute their spatial resolution function, which is defined as the image of a point scatterer at a fixed depth using a ...

[1]  Charles Elachi,et al.  Radiation patterns of interfacial dipole antennas , 1982 .

[2]  Egil Eide,et al.  3D migration of GPR array-antenna data , 2000, International Conference on Ground Penetrating Radar.

[3]  Tsili Wang,et al.  GPR imaging using the generalized Radon transform , 2000 .

[4]  Norman Bleistein,et al.  Mathematical Methods for Wave Phenomena , 1984 .

[5]  David J. Daniels,et al.  Introduction to subsurface radar , 1988 .

[6]  Steven A. Arcone,et al.  Multidimensional GPR array processing using Kirchhoff migration , 2000 .

[7]  J. E. Mast,et al.  Three-dimensional ground-penetrating radar imaging using multifrequency diffraction tomography , 1994, Optics & Photonics.

[8]  Erik M. Johansson,et al.  Three-dimensional ground-penetrating radar imaging using synthetic aperture time-domain focusing , 1994, Optics & Photonics.

[9]  Paul L. Stoffa,et al.  Migration using multi-configuration GPR data , 2000 .

[10]  Jenö Gazdag,et al.  Wave equation migration with the phase-shift method , 1978 .

[11]  Alan G. Green,et al.  Multicomponent georadar data: Some important implications for data acquisition and processing , 2000 .

[12]  Jan van der Kruk,et al.  Three-dimensional imaging of multi-component ground penetrating radar data , 2001 .

[13]  J. Claerbout Toward a unified theory of reflector mapping , 1971 .

[14]  Juan M. Lopez-Sanchez,et al.  3-D radar imaging using range migration techniques , 2000 .

[15]  R. D. Watts,et al.  THE ELECTROMAGNETIC RESPONSE OF A LOW‐LOSS, 2‐LAYER, DIELECTRIC EARTH FOR HORIZONTAL ELECTRIC DIPOLE EXCITATION , 1975 .

[16]  Mark Grasmueck,et al.  3-D ground‐penetrating radar applied to fracture imaging in gneiss , 1996 .

[17]  Thorkild B. Hansen,et al.  Inversion scheme for ground penetrating radar that takes into account the planar air-soil interface , 2000, IEEE Trans. Geosci. Remote. Sens..

[18]  Alan G. Green,et al.  Semiautomated georadar data acquisition in three dimensions , 1999 .

[19]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .

[20]  A. P. Annan,et al.  Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy , 1989 .

[21]  Ian Dennis Longstaff,et al.  Wave equation formulation of synthetic aperture radar (SAR) algorithms in the time-space domain , 1998, IEEE Trans. Geosci. Remote. Sens..