Comparison of Multi-temporal PlanetScope Data with Landsat 8 and Sentinel-2 Data for Estimating Airborne LiDAR Derived Canopy Height in Temperate Forests

[1]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[2]  Giorgos Mallinis,et al.  Evaluation of single-date and multi-seasonal spatial and spectral information of Sentinel-2 imagery to assess growing stock volume of a Mediterranean forest , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[3]  G. Asner,et al.  Evaluating uncertainty in mapping forest carbon with airborne LiDAR , 2011 .

[4]  Michael A. Wulder,et al.  Estimation of Airborne Lidar-Derived Tropical Forest Canopy Height Using Landsat Time Series in Cambodia , 2014, Remote. Sens..

[5]  Ronald E. McRoberts,et al.  Harmonic regression of Landsat time series for modeling attributes from national forest inventory data , 2018 .

[6]  Johannes Reiche,et al.  Linking Terrestrial LiDAR Scanner and Conventional Forest Structure Measurements with Multi-Modal Satellite Data , 2019, Forests.

[7]  C. A. Mücher,et al.  Environmental science: Agree on biodiversity metrics to track from space , 2015, Nature.

[8]  Gregory P. Asner,et al.  Challenges in Estimating Tropical Forest Canopy Height from Planet Dove Imagery , 2020, Remote. Sens..

[9]  M. Chavent,et al.  ClustOfVar: An R Package for the Clustering of Variables , 2011, 1112.0295.

[10]  G. Asner,et al.  Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric , 2014 .

[11]  Jerome K. Vanclay,et al.  Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands , 2008 .

[12]  Max Kuhn,et al.  Building Predictive Models in R Using the caret Package , 2008 .

[13]  Remo Bertani,et al.  Exploiting the capabilities of the Sentinel-2 multi spectral instrument for predicting growing stock volume in forest ecosystems , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[14]  Giorgos Mallinis,et al.  Estimating Mediterranean forest parameters using multi seasonal Landsat 8 OLI imagery and an ensemble learning method , 2017 .

[15]  Joseph Mascaro,et al.  Combating deforestation: From satellite to intervention , 2018, Science.

[16]  Nicholas C. Coops,et al.  Updating stand-level forest inventories using airborne laser scanning and Landsat time series data , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[17]  Mark A. Friedl,et al.  Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery , 2020, Remote Sensing of Environment.

[18]  C. Justice,et al.  High-Resolution Global Maps of 21st-Century Forest Cover Change , 2013, Science.

[19]  Enrico C. Paringit,et al.  ESTIMATION OF MANGROVE FOREST ABOVEGROUND BIOMASS USING MULTISPECTRAL BANDS, VEGETATION INDICES AND BIOPHYSICAL VARIABLES DERIVED FROM OPTICAL SATELLITE IMAGERIES: RAPIDEYE, PLANETSCOPE AND SENTINEL-2 , 2018 .

[20]  Matthieu Molinier,et al.  Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region , 2019, Remote Sensing of Environment.

[21]  Juanle Wang,et al.  Forest Type Classification Based on Integrated Spectral-Spatial-Temporal Features and Random Forest Algorithm—A Case Study in the Qinling Mountains , 2019, Forests.

[22]  Scott J. Goetz,et al.  Integrating LiDAR, Multispectral and SAR Data to Estimate and Map Canopy Height in Tropical Forests , 2019, Remote. Sens..

[23]  Matthias Drusch,et al.  Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services , 2012 .

[24]  Joanne C. White,et al.  Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots , 2018 .

[25]  Takuhiko Murakami,et al.  Seasonal variation in classification accuracy of forest-cover types examined by a single band or band combinations , 2004, Journal of Forest Research.

[26]  Valerie A. Thomas,et al.  Estimating tree canopy cover using harmonic regression coefficients derived from multitemporal Landsat data , 2020, Int. J. Appl. Earth Obs. Geoinformation.

[27]  Wuming Zhang,et al.  An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation , 2016, Remote. Sens..

[28]  Andrew K. Skidmore,et al.  Mapping Forest Canopy Height Across Large Areas by Upscaling ALS Estimates with Freely Available Satellite Data , 2015, Remote. Sens..

[29]  Xiaolin Zhu,et al.  An automatic method for screening clouds and cloud shadows in optical satellite image time series in cloudy regions , 2018, Remote Sensing of Environment.

[30]  M. Claverie,et al.  Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. , 2016, Remote sensing of environment.

[31]  J. Pekel,et al.  High-resolution mapping of global surface water and its long-term changes , 2016, Nature.

[32]  Emma Izquierdo-Verdiguier,et al.  Growing stock volume from multi-temporal landsat imagery through google earth engine , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[33]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[34]  Nicholas Leach,et al.  Normalization method for multi-sensor high spatial and temporal resolution satellite imagery with radiometric inconsistencies , 2019, Comput. Electron. Agric..

[35]  Alessandro Golkar,et al.  CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions , 2017 .

[36]  Stephen N. Matthews,et al.  Mapping Forest Composition with Landsat Time Series: An Evaluation of Seasonal Composites and Harmonic Regression , 2020, Remote. Sens..

[37]  Ovidiu Csillik,et al.  Monitoring tropical forest carbon stocks and emissions using Planet satellite data , 2019, Scientific Reports.

[38]  Lorenzo Busetto,et al.  "sen2r": An R toolbox for automatically downloading and preprocessing Sentinel-2 satellite data , 2020, Comput. Geosci..

[39]  C. Woodcock,et al.  Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images , 2015 .

[40]  Matthew F. McCabe,et al.  Daily Retrieval of NDVI and LAI at 3 m Resolution via the Fusion of CubeSat, Landsat, and MODIS Data , 2018, Remote. Sens..

[41]  Scott J. Goetz,et al.  Mapping tree height distributions in Sub-Saharan Africa using Landsat 7 and 8 data , 2016 .

[42]  Zhe Zhu,et al.  Object-based cloud and cloud shadow detection in Landsat imagery , 2012 .

[43]  Hideki Saito,et al.  Object-Based Mapping of Aboveground Biomass in Tropical Forests Using LiDAR and Very-High-Spatial-Resolution Satellite Data , 2018, Remote. Sens..

[44]  V. Radeloff,et al.  Image texture as a remotely sensed measure of vegetation structure , 2012 .

[45]  Arko Lucieer,et al.  Modelling LiDAR derived tree canopy height from Landsat TM, ETM+ and OLI satellite imagery - A machine learning approach , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[46]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[47]  Miska Luoto,et al.  Estimating fractional cover of tundra vegetation at multiple scales using unmanned aerial systems and optical satellite data , 2019, Remote Sensing of Environment.

[48]  Tuomo Kauranne,et al.  Modelling and Predicting the Growing Stock Volume in Small-Scale Plantation Forests of Tanzania Using Multi-Sensor Image Synergy , 2019, Forests.

[49]  Jan Dirk Wegner,et al.  Country-wide high-resolution vegetation height mapping with Sentinel-2 , 2019, Remote Sensing of Environment.