Least-squares variance component estimation: theory and GPS applications

In this thesis we study the method of least-squares variance component estimation (LS-VCE) and elaborate on theoretical and practical aspects of the method. We show that LS-VCE is a simple, flexible, and attractive VCE-method. The LS-VCE method is simple because it is based on the well-known principle of least-squares. With this method the estimation of the (co)variance components is based on a linear model of observation equations. The method is flexible since it works with a user-defined weight matrix. Different weight matrix classes can be defined which all automatically lead to unbiased estimators of (co)variance components. LS-VCE is attractive since it allows one to apply the existing body of knowledge of least-squares theory to the problem of (co)variance component estimation. With this method, one can 1) obtain measures of discrepancies in the stochastic model, 2) determine the covariance matrix of the (co)variance components, 3) obtain the minimum variance estimator of (co)variance components by choosing the weight matrix as the inverse of the covariance matrix, 4) take the a-priori information on the (co)variance component into account, 5) solve for a nonlinear (co)variance component model, 6) apply the idea of robust estimation to (co)variance components, 7) evaluate the estimability of the (co)variance components, and 8) avoid the problem of obtaining negative variance components.

[1]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[2]  J. Kusche,et al.  A Monte-Carlo technique for weight estimation in satellite geodesy , 2003 .

[3]  Yehuda Bock,et al.  Southern California permanent GPS geodetic array: Error analysis of daily position estimates and site velocities , 1997 .

[4]  William H. Press,et al.  Numerical recipes , 1990 .

[5]  F. Lad,et al.  Approximating the Distribution for Sums of Products of Normal Variables , 2003 .

[6]  Georgia Fotopoulos,et al.  Calibration of geoid error models via a combined adjustment of ellipsoidal, orthometric and gravimetric geoid height data , 2005 .

[7]  Jürgen Kusche,et al.  Stochastic model validation of satellite gravity data: A test with CHAMP pseudo-observations , 2005 .

[8]  Xiaoli Ding,et al.  Seasonal and secular positional variations at eight co-located GPS and VLBI stations , 2005 .

[9]  K. Kubik,et al.  The estimation of the weights of measured quantities within the method of least squares , 1970 .

[10]  AliReza Amiri-Simkooei Separating Receiver Noise and Multipath Effects in Time Series of GPS Baselines Using Harmonic Functions , 2005 .

[11]  P. Teunissen The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation , 1995 .

[12]  C. Radhakrishna Rao,et al.  Minimum variance quadratic unbiased estimation of variance components , 1971 .

[13]  F. Wyatt Displacement of surface monuments: Vertical motion , 1989 .

[14]  P. Vaníček Approximate spectral analysis by least-squares fit , 1969 .

[15]  C.C.J.M. Tiberius,et al.  Probability and Observation Theory. , 2004 .

[16]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[17]  Donghyun Kim,et al.  Quality Control Techniques and Issues in GPS Applications: Stochastic Modeling and Reliability Test , 2001 .

[18]  T. Dixon,et al.  Noise in GPS coordinate time series , 1999 .

[19]  P. Teunissen Least-squares estimation of the integer GPS ambiguities , 1993 .

[20]  J. Zumberge,et al.  Precise point positioning for the efficient and robust analysis of GPS data from large networks , 1997 .

[21]  Michael R. Craymer,et al.  The least squares spectrum, its inverse transform and autocorrelation function, theory and some applications in geodesy , 1998 .

[22]  George H. Ling,et al.  Die Ausgleichungsrechnung nach der Methode der Kleinsten Quadrate , 1907 .

[23]  Marinos Kavouras,et al.  Assessment of observations using minimum norm quadratic unbiased estimation (minque) , 1990 .

[24]  Mike P. Stewart,et al.  Aliased tidal signatures in continuous GPS height time series , 2003 .

[25]  Markus Rothacher,et al.  The International GPS Service (IGS): An interdisciplinary service in support of Earth sciences , 1999 .

[26]  Simon D. P. Williams,et al.  Offsets in Global Positioning System time series , 2003 .

[27]  Jürgen Kusche,et al.  Surface mass redistribution inversion from global GPS deformation and Gravity Recovery and Climate Experiment (GRACE) gravity data , 2005 .

[28]  Chris Rizos,et al.  A SIMPLIFIED MINQUE PROCEDURE FOR THE ESTIMATION OF VARIANCE-COVARIANCE COMPONENTS OF GPS OBSERVABLES , 2002 .

[29]  W. Caspary Concepts of network and deformation analysis , 1987 .

[30]  Karl-Rudolf Koch,et al.  Parameter estimation and hypothesis testing in linear models , 1988 .

[31]  D. Agnew,et al.  The time-domain behavior of power-law noises. [of many geophysical phenomena] , 1992 .

[32]  Jinling Wang,et al.  Stochastic Modeling for Static GPS Baseline Data Processing , 1998 .

[33]  Zuheir Altamimi,et al.  ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications , 2002 .

[34]  P. Teunissen,et al.  Least-squares variance component estimation , 2008 .

[35]  H. D. Patterson,et al.  Recovery of inter-block information when block sizes are unequal , 1971 .

[36]  Peter Teunissen,et al.  The Ionosphere-weighted GPS baseline precision in canonical form , 1998 .

[37]  P. Teunissen,et al.  Assessment of noise in GPS coordinate time series : Methodology and results , 2007 .

[38]  Yehuda Bock,et al.  Error analysis of continuous GPS position time series , 2004 .

[39]  Alireza Amiri-Simkooei,et al.  Formulation of L1 norm minimization in Gauss-Markov models , 2003 .

[40]  Peiliang Xu,et al.  Estimability analysis of variance and covariance components , 2007 .

[41]  T. Kato,et al.  On optimal geodetic network design for fault-mechanics studies , 2000 .

[42]  Peter Teunissen,et al.  Towards a least-squares framework for adjusting and testing of both functional and stochastic models. , 2004 .

[43]  Derek D. Lichti,et al.  Investigating the propagation mechanism of unmodelled systematic errors on coordinate time series estimated using least squares , 2005 .

[44]  Y. Bock,et al.  Anatomy of apparent seasonal variations from GPS‐derived site position time series , 2001 .

[45]  A. Doma Generalized Inverses of Matrices and Its Applications. , 1983 .

[46]  J. Beavan Noise properties of continuous GPS data from concrete pillar geodetic monuments in New Zealand and comparison with data from U.S. deep drilled braced monuments , 2005 .

[47]  Peiliang Xu,et al.  Variance Component Estimation in Linear Inverse Ill-posed Models , 2006 .

[48]  Christian Tiberius,et al.  VARIANCE COMPONENT ESTIMATION AND PRECISE GPS POSITIONING: CASE STUDY , 2003 .

[49]  Peter Boiua,et al.  Precision, Cross Correlation, and Time Correlation of GPS Phase and Code Observations , 2000 .

[50]  R. Hsu,et al.  An alternative expression for the variance factors in using Iterated Almost Unbiased Estimation , 1999 .

[51]  P. Teunissen Adjustment Theory: an introduction , 2000 .

[52]  R. Hsu Helmert Method as Equivalent of Iterated Almost Unbiased Estimation , 2001 .

[53]  Ou Ziqiang,et al.  Estimation of variance and covariance components , 1989 .

[54]  M. Şahin,et al.  Variance component estimation applied to satellite laser ranging , 1992 .

[55]  Burkhard Schaffrin,et al.  Best invariant covariance component estimators and its application to the generalize multivariate adjustment of heterogeneous deformation observations , 1981 .

[56]  Yehuda Bock,et al.  Instantaneous geodetic positioning at medium distances with the Global Positioning System , 2000 .

[57]  A. Amiri-Simkooei,et al.  Assessing receiver noise using GPS short baseline time series , 2006 .

[58]  Alexandra Verhagen,et al.  The GNSS integer ambiguities: estimation and validation , 2005 .

[59]  Geoffrey Blewitt,et al.  Crustal displacements due to continental water loading , 2001 .

[60]  S. Williams The effect of coloured noise on the uncertainties of rates estimated from geodetic time series , 2003 .

[61]  Clyde C. Goad,et al.  On optimal filtering of GPS dual frequency observations without using orbit information , 1991 .

[62]  F. Wyatt Displacement of surface monuments: Horizontal motion , 1982 .

[63]  Kenneth W. Hudnut,et al.  Southern California Permanent GPS Geodetic Array: Continuous measurements of regional crustal deformation between the 1992 Landers and 1994 Northridge earthquakes , 1997 .

[64]  Z. Yu,et al.  A universal formula of maximum likelihood estimation of variance-covariance components , 1996 .

[65]  Richard B. Langley,et al.  Estimation of the Stochastic Model for Long- Baseline Kinematic GPS Applications , 2001 .

[66]  R. Kalaba,et al.  Nonlinear Least Squares , 1986 .

[67]  Geoffrey Blewitt,et al.  Effect of annual signals on geodetic velocity , 2002 .

[68]  Karl-Rudolf Koch,et al.  Bayesian Inference with Geodetic Applications , 1990 .

[69]  D. Agnew,et al.  Finding the repeat times of the GPS constellation , 2006 .

[70]  Carine Bruyninx,et al.  EPN coordinate time series monitoring for reference frame maintenance , 2004 .

[71]  N. Perfetti,et al.  Detection of station coordinate discontinuities within the Italian GPS Fiducial Network , 2006 .

[72]  Paul Cross,et al.  Stochastic modelling for very high precision real-time kinematic GPS in an engineering environment , 1998 .

[73]  Characterizing atmospheric turbulence with GPS , 2004 .

[74]  P. Teunissen Testing Theory: an introduction , 2009 .

[75]  J. Kusche,et al.  Regularization of geopotential determination from satellite data by variance components , 2002 .

[76]  Gerhard Beutler,et al.  Validation of GNSS orbits using SLR observations , 2004 .

[77]  Wolfgang Bischoff,et al.  A procedure for testing the assumption of homoscedasticity in least squares residuals: a case study of GPS carrier-phase observations , 2005 .

[78]  É. Calais,et al.  Continuous GPS measurements across the Western Alps, 1996–1998 , 1999 .

[79]  Karl-Rudolf Koch,et al.  Maximum likelihood estimate of variance components , 1986 .

[81]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[82]  N. L. Johnson,et al.  Linear Statistical Inference and Its Applications , 1966 .

[83]  Paul Cross,et al.  Processing Models for Very High Accuracy GPS Positioning , 1998, Journal of Navigation.

[84]  C. Tiberius,et al.  ESTIMATION OF THE STOCHASTIC MODEL FOR GPS CODE AND PHASE OBSERVABLES , 2000 .

[85]  Georgia Fotopoulos,et al.  An analysis on the optimal combination of geoid, orthometric and ellipsoidal height data , 2003 .

[86]  J. Kusche,et al.  Noise variance estimation and optimal weight determination for GOCE gravity recovery , 2003 .

[87]  Christian Tiberius,et al.  An experimental comparison of noise characteristics of seven high-end dual frequency GPS receiver-sets , 2000, IEEE 2000. Position Location and Navigation Symposium (Cat. No.00CH37062).

[88]  C. R. Rao,et al.  Estimation of variance and covariance components--MINQUE theory , 1971 .

[89]  W. Baarda,et al.  A testing procedure for use in geodetic networks. , 1968 .

[90]  P. Bentler,et al.  Moments of elliptically distributed random variates , 1986 .

[91]  N. Crocetto,et al.  Simplified formulae for the BIQUE estimation of variance components in disjunctive observation groups , 2000 .

[92]  Geoffrey Blewitt,et al.  Methodology for global geodetic time series estimation: A new tool for geodynamics , 2000 .

[93]  Leonid Petrov,et al.  Study of harmonic site position variations determined by very long baseline interferometry , 2003 .

[94]  V. Rich Personal communication , 1989, Nature.

[95]  John Langbein,et al.  Correlated errors in geodetic time series: Implications for time‐dependent deformation , 1997 .

[96]  Yehuda Bock,et al.  High‐rate real‐time GPS network at Parkfield: Utility for detecting fault slip and seismic displacements , 2004 .

[97]  Wolfgang Bischoff,et al.  A Procedure for Estimating the Variance Function of Linear Models and for Checking the Appropriateness of Estimated Variances: A Case Study of GPS Carrier-phase Observations , 2006 .