Characterization of Maritime Pine Forests with Combination of Simulated P-Band SAR Data and Hyperspectral Data

This paper describes a sensitivity study performed on simulated radar and optical remote sensing forest data. It presents how the dual model has been built up. The first step is a forest growth model fed with biophysical parameters. The geometrical description is then the input of an optical hyperspectral model, giving reflectance spectra, and a Synthetic Aperture Radar (SAR) model, giving the polarimetric and interferometric observables. As an illustration, the first results obtained by both models outputs are presented, and fusions of these outputs are performed.

[1]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[2]  Pascale Dubois-Fernandez,et al.  Potentials of a compact polarimetric SAR system , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[3]  Vince Salomonson,et al.  The moderate resolution imaging spectrometer (MODIS) science and data system requirements , 1991, IEEE Trans. Geosci. Remote. Sens..

[4]  Ludovic Villard,et al.  Forest microwave backscatter modelling at P Band: Temperate pine forest , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[5]  S. Tarantola,et al.  Designing a spectral index to estimate vegetation water content from remote sensing data: Part 2. Validation and applications , 2002 .

[6]  Gregory P. Asner,et al.  Forest leaf area density profiles from the quantitative fusion of radar and hyperspectral data , 2002 .

[7]  Markus Holtz,et al.  Validation and Applications , 2011 .

[8]  Jean-Philippe Gastellu-Etchegorry,et al.  DART: a 3D model for simulating satellite images and studying surface radiation budget , 2004 .

[9]  F. J. Kriegler,et al.  Preprocessing Transformations and Their Effects on Multispectral Recognition , 1969 .

[10]  Thomas P. Minka,et al.  Gates , 2008, NIPS.

[11]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[12]  A. J. Collins,et al.  Introduction to Multivariate Analysis , 1982 .

[13]  Kyle McDonald,et al.  Diurnal change in trees as observed by optical and microwave sensors: the EOS synergism study , 1991, IEEE Trans. Geosci. Remote. Sens..

[14]  Albert Olioso,et al.  Estimation of Soil Moisture Content of bare soils from their spectral optical properties in the 0.4 – 12 µm spectral domain , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[15]  Irena Hajnsek,et al.  Pol-InSAR Simulations in Forest Bistatic Scattering , 2008 .

[16]  Jean-Pierre Wigneron,et al.  A forest geometric description of a maritime pine forest suitable for discrete microwave models , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Pierre Borderies,et al.  Radar and Optical Parallel Modelling of Forest Remote Sensing Data , 2012 .

[18]  A. Lesaignoux Estimation de l'humidité de surface des sols nus à partir de l'imagerie hyperspectrale à haute résolution spatiale sur le domaine optique 0. 4 - 14 µm , 2010 .

[19]  F. Rocca,et al.  The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle , 2011 .

[20]  D. M. Gates Water relations of forest trees , 1991, IEEE Trans. Geosci. Remote. Sens..