The Existence of Minimal Logarithmic Signatures for Some Finite Simple Unitary Groups

The MLS conjecture states that every finite simple group has a minimal logarithmic signature. The aim of this paper is proving the existence of a minimal logarithmic signature for some simple unitary groups P S U n ( q ). We report a gap in the proof of the main result of Hong et al. (Des. Codes Cryptogr. 77: 179–191, 2015 ) and present a new proof in some special cases of this result. As a consequence, the MLS conjecture is still open.

[1]  Michio Suzuki A characterization of the 3-dimensional projective unitary group over a finite field of odd characteristic , 1965 .

[2]  V. D. Mazurov Minimal permutation representations of finite simple classical groups. Special linear, symplectic, and unitary groups , 1993 .

[3]  Caiheng Li,et al.  Factorizations of almost simple groups with a solvable factor, and Cayley graphs of solvable groups , 2014, Memoirs of the American Mathematical Society.

[4]  Robert A. Wilson,et al.  The finite simple groups , 2009 .

[5]  A. J. Surkan,et al.  A new random number generator from permutation groups , 1985 .

[6]  Jie Wang,et al.  A Family of Non-quasiprimitive Graphs Admitting a Quasiprimitive 2-arc Transitive Group Action , 1999, Eur. J. Comb..

[7]  J. Dixon,et al.  Permutation Groups , 1996 .

[8]  Spyros S. Magliveras,et al.  Minimal logarithmic signatures for finite groups of Lie type , 2010, Des. Codes Cryptogr..

[9]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[10]  Spyros S. Magliveras,et al.  A Public Key Cryptosystem Based on Non-abelian Finite Groups , 2008, Journal of Cryptology.

[11]  Nidhi Singhi,et al.  Minimal logarithmic signatures for classical groups , 2011, Des. Codes Cryptogr..

[12]  Tran van Trung,et al.  On Minimal Logarithmic Signatures of Finite Groups , 2005, Exp. Math..

[13]  Bertram Huppert,et al.  Singer-Zyklen in klassischen Gruppen , 1970 .

[14]  Nasir D. Memon,et al.  Algebraic properties of cryptosystem PGM , 1992, Journal of Cryptology.

[15]  T. Trung,et al.  LOGARITHMIC SIGNATURES FOR ABELIAN GROUPS AND THEIR FACTORIZATION , 2013 .

[16]  Martin Rötteler,et al.  On Minimal Length Factorizations of Finite Groups , 2003, Exp. Math..

[17]  Ahmad Gholami,et al.  The Existence of Minimal Logarithmic Signatures for Some Finite Simple Groups , 2018, Exp. Math..

[18]  R. W. Hartley,et al.  Determination of the Ternary Collineation Groups Whose Coefficients Lie in the GF(2 n ) , 1925 .

[19]  Yixian Yang,et al.  All exceptional groups of lie type have minimal logarithmic signatures , 2014, Applicable Algebra in Engineering, Communication and Computing.

[20]  Ahmad Gholami,et al.  The existence of minimal logarithmic signatures for the sporadic Suzuki and simple Suzuki groups , 2015, Cryptography and Communications.

[21]  Petra E. Holmes On Minimal Factorisations of Sporadic Groups , 2004, Exp. Math..

[22]  Spyros S. Magliveras,et al.  Properties of Cryptosystem PGM , 1989, CRYPTO.

[23]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[24]  Douglas R. Stinson,et al.  New Approaches to Designing Public Key Cryptosystems Using One-Way Functions and Trapdoors in Finite Groups , 2001, Journal of Cryptology.

[25]  László Babai,et al.  On the Number of p -Regular Elements in Finite Simple Groups , 2009 .

[26]  Yixian Yang,et al.  Minimal logarithmic signatures for the unitary group $$U_n(q)$$Un(q) , 2015, Des. Codes Cryptogr..

[27]  Cheryl E. Praeger,et al.  The maximal factorizations of the finite simple groups and their automorphism groups , 1990 .

[28]  Howard H. Mitchell,et al.  Determination of the ordinary and modular ternary linear groups , 1911 .

[29]  B. Huppert Endliche Gruppen I , 1967 .