Cocaine and Amphetamine Depress Striatal GABAergic Synaptic Transmission through D2 Dopamine Receptors

[1]  M. Low,et al.  Facilitated glutamatergic transmission in the striatum of D2 dopamine receptor-deficient mice. , 2001, Journal of neurophysiology.

[2]  J. Bargas,et al.  D2 Dopamine Receptors in Striatal Medium Spiny Neurons Reduce L-Type Ca2+ Currents and Excitability via a Novel PLCβ1–IP3–Calcineurin-Signaling Cascade , 2000, The Journal of Neuroscience.

[3]  T. Robbins,et al.  Dissociation in Conditioned Dopamine Release in the Nucleus Accumbens Core and Shell in Response to Cocaine Cues and during Cocaine-Seeking Behavior in Rats , 2000, The Journal of Neuroscience.

[4]  G. Lahoste,et al.  Dopamine D1 Receptors Synergize with D2, But Not D3 or D4, Receptors in the Striatum without the Involvement of Action Potentials , 2000, The Journal of Neuroscience.

[5]  T Nagatsu,et al.  Synaptic integration mediated by striatal cholinergic interneurons in basal ganglia function. , 2000, Science.

[6]  G. Rebec,et al.  Dopamine‐independent action of cocaine on striatal and accumbal neurons , 2000, The European journal of neuroscience.

[7]  P. Calabresi,et al.  Activation of D2-Like Dopamine Receptors Reduces Synaptic Inputs to Striatal Cholinergic Interneurons , 2000, The Journal of Neuroscience.

[8]  S. Hyman,et al.  Addiction, Dopamine, and the Molecular Mechanisms of Memory , 2000, Neuron.

[9]  Hans Forssberg,et al.  Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons , 2000, Nature Neuroscience.

[10]  J. Aceves,et al.  Inhibitory control of the GABAergic transmission in the rat neostriatum by D2 dopamine receptors , 1999, Neuroscience.

[11]  P. Calabresi,et al.  Unilateral dopamine denervation blocks corticostriatal LTP. , 1999, Journal of neurophysiology.

[12]  J. Tepper,et al.  Inhibitory control of neostriatal projection neurons by GABAergic interneurons , 1999, Nature Neuroscience.

[13]  Charles J. Wilson,et al.  Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo , 1998, Nature.

[14]  A. Graybiel The Basal Ganglia and Chunking of Action Repertoires , 1998, Neurobiology of Learning and Memory.

[15]  J. Houk,et al.  Model of cortical-basal ganglionic processing: encoding the serial order of sensory events. , 1998, Journal of neurophysiology.

[16]  P. Calabresi,et al.  Striatal spiny neurons and cholinergic interneurons express differential ionotropic glutamatergic responses and vulnerability: Implications for ischemia and Huntington's disease , 1998, Annals of neurology.

[17]  R. Malenka,et al.  Modulation of synaptic transmission by dopamine and norepinephrine in ventral but not dorsal striatum. , 1998, Journal of neurophysiology.

[18]  D. Plenz,et al.  Up and Down States in Striatal Medium Spiny Neurons Simultaneously Recorded with Spontaneous Activity in Fast-Spiking Interneurons Studied in Cortex–Striatum–Substantia Nigra Organotypic Cultures , 1998, The Journal of Neuroscience.

[19]  S. Hyman,et al.  Acute Effects of Cocaine on Human Brain Activity and Emotion , 1997, Neuron.

[20]  P. Calabresi,et al.  Abnormal Synaptic Plasticity in the Striatum of Mice Lacking Dopamine D2 Receptors , 1997, The Journal of Neuroscience.

[21]  P. Sokoloff,et al.  Induction of dopamine D3 receptor expression as a mechanism of behavioral sensitization to levodopa. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[22]  A M Graybiel,et al.  Cortically Driven Immediate-Early Gene Expression Reflects Modular Influence of Sensorimotor Cortex on Identified Striatal Neurons in the Squirrel Monkey , 1997, The Journal of Neuroscience.

[23]  J. Bargas,et al.  Dopamine selects glutamatergic inputs to neostriatal neurons , 1997, Synapse.

[24]  S. Sesack,et al.  Ultrastructural immunocytochemical localization of the dopamine D2 receptor within GABAergic neurons of the rat striatum , 1997, Brain Research.

[25]  C. Wilson,et al.  Corticostriatal innervation of the patch and matrix in the rat neostriatum , 1996, The Journal of comparative neurology.

[26]  D. Surmeier,et al.  Coordinated Expression of Dopamine Receptors in Neostriatal Medium Spiny Neurons , 1996, The Journal of Neuroscience.

[27]  Jennifer A. Mangels,et al.  A Neostriatal Habit Learning System in Humans , 1996, Science.

[28]  H. C. Cromwell,et al.  Neuromodulatory actions of dopamine on synaptically‐evoked neostriatal responses in slices , 1996, Synapse.

[29]  Y. J. Lin,et al.  Permeation and block of dopamine-modulated potassium channels on rat striatal neurons by cesium and barium ions. , 1996, Journal of neurophysiology.

[30]  A. D. Smith,et al.  Synaptic Connections Between Spiny Neurons of the Direct and Indirect Pathways in the Neostriatum of the Rat: Evidence from Dopamine Receptor and Neuropeptide Immunostaining , 1996, The European journal of neuroscience.

[31]  Charles J. Wilson,et al.  The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  L. Porrino,et al.  Cocaine alters cerebral metabolism within the ventral striatum and limbic cortex of monkeys , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  H. Kita Glutamatergic and gabaergic postsynaptic responses of striatal spiny neurons to intrastriatal and cortical stimulation recorded in slice preparations , 1996, Neuroscience.

[34]  P. Calabresi,et al.  The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia , 1996, Trends in Neurosciences.

[35]  A. Saiardi,et al.  Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors , 1995, Nature.

[36]  K. Hsu,et al.  Presynaptic D2 dopaminergic receptors mediate inhibition of excitatory synaptic transmission in rat neostriatum , 1995, Brain Research.

[37]  P. Calabresi,et al.  Vulnerability of Medium Spiny Striatal Neurons to Glutamate: Role of Na+/K+ ATPase , 1995, The European journal of neuroscience.

[38]  J. Wickens,et al.  Effects of local connectivity on striatal function: Simulation and analysis of a model , 1995, Synapse.

[39]  J. Vincent,et al.  Dopamine D1 receptor modulates the voltage‐gated sodium current in rat striatal neurones through a protein kinase A. , 1995, The Journal of physiology.

[40]  P. Greengard,et al.  Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons , 1995, Neuron.

[41]  Charles J. Wilson,et al.  Surround inhibition among projection neurons is weak or nonexistent in the rat neostriatum. , 1994, Journal of neurophysiology.

[42]  B. D. Bennett,et al.  Synaptic input and output of parvalbumin-immunoreactive neurons in the neostriatum of the rat , 1994, Neuroscience.

[43]  A M Graybiel,et al.  The basal ganglia and adaptive motor control. , 1994, Science.

[44]  Y. Qin,et al.  GABA‐Ergic interneurons of the striatum express the shaw‐like potassium channel KvS3.1 , 1994, Synapse.

[45]  Elliot A. Stein,et al.  Cocaine's time action profile on regional cerebral blood flow in the rat , 1993, Brain Research.

[46]  C. Cepeda,et al.  Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[47]  F. J. White,et al.  Electrophysiological effects of cocaine in the rat nucleus accumbens: microiontophoretic studies. , 1993, The Journal of pharmacology and experimental therapeutics.

[48]  G Bernardi,et al.  Electrophysiology of dopamine-denervated striatal neurons. Implications for Parkinson's disease. , 1993, Brain : a journal of neurology.

[49]  A M Graybiel,et al.  Coordinate expression of c-fos and jun B is induced in the rat striatum by cocaine , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  T. W. Berger,et al.  Functionally distinct subpopulations of striatal neurons are differentially regulated by gabaergic and dopaminergic inputs—I. In vivo analysis , 1992, Neuroscience.

[51]  T. W. Berger,et al.  Functionally distinct subpopulations of striatal neurons are differentially regulated by gabaergic and dopaminergic inputs—II. In vitro analysis , 1992, Neuroscience.

[52]  P. Calabresi,et al.  Chronic neuroleptic treatment: D2 dopamine receptor supersensitivity and striatal glutamatergic transmission , 1992, Annals of neurology.

[53]  R. North,et al.  Membrane properties and synaptic responses of rat striatal neurones in vitro. , 1991, The Journal of physiology.

[54]  R. Kuczenski,et al.  Amphetamine, cocaine, and fencamfamine: relationship between locomotor and stereotypy response profiles and caudate and accumbens dopamine dynamics , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  A. Graybiel,et al.  Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[56]  P. Dougherty,et al.  Effects of microiontophoretic application of cocaine, alone and with receptor antagonists, upon the neurons of the medial prefrontal cortex, nucleus accumbens and caudate nucleus of rats , 1990, Neuropharmacology.

[57]  A. Mcgeorge,et al.  The organization of the projection from the cerebral cortex to the striatum in the rat , 1989, Neuroscience.

[58]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[59]  P. Calabresi,et al.  Endogenous dopamine and dopaminergic agonists modulate synaptic excitation in neostriatum: Intracellular studies from naive and catecholamine-depleted rats , 1988, Neuroscience.

[60]  J. Saint-Cyr,et al.  Procedural learning and neostriatal dysfunction in man. , 1988, Brain : a journal of neurology.

[61]  G. Di Chiara,et al.  Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[62]  B. Yamamoto,et al.  The acute effects of methylenedioxymethamphetamine on dopamine release in the awake-behaving rat. , 1988, European journal of pharmacology.

[63]  Ian Q. Whishaw,et al.  Impairments in the acquisition, retention and selection of spatial navigation strategies after medial caudate-putamen lesions in rats , 1987, Behavioural Brain Research.

[64]  T. Kita,et al.  Passive electrical membrane properties of rat neostriatal neurons in an in vitro slice preparation , 1984, Brain Research.

[65]  Charles J. Wilson,et al.  Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: A study employing intracellular injection of horseradish peroxidase , 1980 .

[66]  S. Iversen,et al.  Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum , 1975, Brain Research.

[67]  W. Schultz,et al.  Responses to reward in monkey dorsal and ventral striatum , 2004, Experimental Brain Research.

[68]  L S Seiden,et al.  Amphetamine: effects on catecholamine systems and behavior. , 1993, Annual review of pharmacology and toxicology.

[69]  G. Koob,et al.  Functionally selective neurochemical afferents and efferents of the mesocorticolimbic and nigrostriatal dopamine system. , 1993, Progress in brain research.

[70]  Sl Harris Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartment and limbic subdivisions of the striatum , 1990 .

[71]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[72]  J. Penney,et al.  Speculations on the functional anatomy of basal ganglia disorders. , 1983, Annual review of neuroscience.