5.4 Gbps real time quantum random number generator with simple implementation.

We present a random number generation scheme based on measuring the phase fluctuations of a laser with a simple and compact experimental setup. A simple model is established to analyze the randomness and the simulation result based on this model fits well with the experiment data. After the analog to digital sampling and suitable randomness extraction integrated in the field programmable gate array, the final random bits are delivered to a PC, realizing a 5.4 Gbps real time quantum random number generation. The final random bit sequences have passed all the NIST and DIEHARD tests. OCIS codes: (060.0060) Fiber optics and optical communications; (270.5568) Quantum cryptography; (270.2500) Fluctuations, relaxations, and noise; (260.3160) Interference. References and links 1. N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44(247), 335–341 (1949). 2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002). 3. Martin, A., B. Sanguinetti, C.C.W. Lim, R. Houlmann, and H. Zbinden, “Quantum Random Number Generation for 1.25-GHz Quantum Key Distribution Systems,” Journal of Lightwave Technology 33(13), 2855–2859 (2015). 4. Li, H.-W., Z.-Q. Yin, S. Wang, Y.-J. Qian, W. Chen, G.-C. Guo, and Z.-F. Han, “Randomness determines practical security of BB84 quantum key distribution,” Scientific Reports 5, 16200 (2015). 5. Bouda, J., M. Pivoluska, M. Plesch, and C. Wilmott, “Weak randomness seriously limits the security of quantum key distribution,” Physical Review A 86(6), 062308 (2012). 6. M. Herrero-Collantes and J. C. Garcia-Escartin, “Quantum random number generators,” arXiv:1604.03304v1, 2016. 7. J. Rarity, P. Owens, and P. Tapster, “Quantum random-number generation and key sharing,” J. Mod. Opt. 41(12), 2435–2444 (1994). 8. A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard, and H. Zbinden, “Optical quantum random number generator,” J. Modern Optics 47(4), 595–598 (2000). 9. T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, “A fast and compact quantum random number generator,” Rev. Sci. Instrum. 71(4), 1675–1680 (2000). 10. http://www.idquantique.com. 11. H.Ma, Y. Xie, and L.Wu, “Random number generation based on the time of arrival of single photons,” Appl. Opt., 44(36), 7760–7763 (2005). 12. C. Gabriel, C.Wittmann, D. Sych, R. Dong,W. Mauerer, U. L. Andersen, C. Marquardt, and G. Leuchs, “A generator for unique quantum random numbers based on vacuum states,” Nat. Photon. 4(10), 711–715 (2010). 13. M. Jofre, M. Curty, F. Steinlechner, G. Anzolin, J. P. Torres, M. W. Mitchell, and V. Pruneri, “True random numbers from amplified quantum vacuum,” Opt. Exp. 19(21), 20665–20672 (2011). 14. B. Qi, Y.-M. Chi, H.-K. Lo and L. Qian, "High-speed quantum random number generation by measuring the phase noise of a single-mode laser", Opt. Lett. 35(3), 312-314 (2010). 15. F. Xu, B. Qi, X. Ma, H. Xu, H. Zheng, and H.-K. Lo, “Ultrafast quantum random number generator based on quantum phase fluctuations,” Opt. Exp. 20(11), 12366–12377 (2012). 16. X. G. Zhang, Y. Q. Nie, H. Zhou, H. Liang, X. Ma, J. Zhang, and J. W. Pan, “68 Gbps quantum random number generation by measuring laser phase fluctuations”, arXiv:1606.09344v1, 2015. 17. C. Herry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259-264 (1982). 18. K. Vahala, and A. Yariv, “Occupation fluctuation noise: A fundamental source of linewidth broadening in semiconductor lasers,” Appl. Phys. Lett. 43, 140 (1983).