Exact envelope-function theory versus symmetrized Hamiltonian for quantum wires: a comparison

[1]  W. Kohn,et al.  Motion of Electrons and Holes in Perturbed Periodic Fields , 1955 .

[2]  G. Koster,et al.  The Properties of the Thirty-Two Point Groups , 1963 .

[3]  Chang,et al.  Valence-subband structures of GaAs/AlxGa1-xAs quantum wires: The effect of split-off bands. , 1989, Physical review. B, Condensed matter.

[4]  Gaines,et al.  Optical anisotropy in a quantum-well-wire array with two-dimensional quantum confinement. , 1989, Physical review letters.

[5]  Sercel,et al.  Analytical formalism for determining quantum-wire and quantum-dot band structure in the multiband envelope-function approximation. , 1990, Physical review. B, Condensed matter.

[6]  M G Burt,et al.  The justification for applying the effective-mass approximation to microstructures , 1992 .

[7]  I. Vurgaftman,et al.  A comparison of optoelectronic properties of lattice-matched and strained quantum-well and quantum-wire structures , 1994 .

[8]  O'Reilly,et al.  Evaluation of various approximations used in the envelope-function method. , 1994, Physical review. B, Condensed matter.

[9]  B. Monemar,et al.  Optical intervalence‐subband transitions in strained p‐type In1−xGaxAs/InP quantum wells , 1995 .

[10]  Forchel,et al.  Linear polarization of photoluminescence emission and absorption in quantum-well wire structures: Experiment and theory. , 1995, Physical review. B, Condensed matter.

[11]  P. Y. Yu,et al.  Fundamentals of Semiconductors , 1995 .

[12]  P. Stavrinou,et al.  General rules for constructing valence band effective mass Hamiltonians with correct operator order for heterostructures with arbitrary orientations , 1998 .

[13]  Sergio E. Ulloa,et al.  Ordered Hamiltonian and matching conditions for heterojunctions with wurtzite symmetry: GaN/Al x Ga 1-x N quantum wells , 1999 .

[14]  E. Kapon,et al.  The impact of low symmetry on the electronic and optical properties of quantum wires , 2000 .

[15]  Xiangfeng Duan,et al.  General Synthesis of Compound Semiconductor Nanowires , 2000 .

[16]  V. A. Fonoberov,et al.  Development of an eight-band theory for quantum dot heterostructures , 2001, cond-mat/0109275.

[17]  V. Colvin,et al.  Shape matters , 2003, Nature materials.

[18]  H. Bouchriha,et al.  Symmetrized Hamiltonian versus 'Foreman' Hamiltonian for semiconductor valence band: an insight , 2004 .

[19]  L. Voon,et al.  Valence-band Energies of GaAs/AlGaAs and InGaAs/InP V-groove [1-10] Quantum Wires , 2004 .