Exponential Ergodicity for Time-Periodic McKean-Vlasov SDEs

As extensions to the corresponding results derived for time homogeneous McKeanVlasov SDEs, the exponential ergodicity is proved for time-periodic distribution dependent SDEs in three different situations: 1) in the quadratic Wasserstein distance and relative entropy for the dissipative case; 2) in the Wasserstein distance induced by a cost function for the partially dissipative case; and 3) in the weighted Wasserstein distance induced by a cost function and a Lyapunov function for the fully non-dissipative case. The main results are illustrated by time inhomogeneous granular media equations, and are extended to reflecting McKean-Vlasov SDEs in a convex domain. AMS subject Classification: 60B05, 60B10.