Cost-optimal Control of Photovoltaic Systems with Battery Storage under Variable Electricity Tariffs

In this paper, domestic homes with a photovoltaic system, a battery storage and variable electricity tariffs are considered. First, a control oriented model of the system is developed. Second, three controllers are designed with the aim to minimize costs for the user, and at the same time help the energy provider maintaining grid stability, by proper battery load management. A base-level controller serves as performance reference for the advanced optimization based controllers (a nonlinear controller with full system knowledge and a linear controller) which utilize forecasts of energy production and consumption. Performance evaluation was done in simulation using real-world measurement data over a full year. Results show that significant cost reductions can be achieved with the nonlinear controller while the linear one suffers from imprecise system knowledge.ZusammenfassungIn diesem Beitrag werden Haushalte mit einer Photovoltaikanlage, ein Batteriespeicher und die Verwendung von variablen Strompreisen betrachtet. Zuerst wird eine regelungstechnische Modellierung der Einzelkomponenten dargestellt. Anschließend werden drei verschiedene Regelungen zur Minimierung der Energiekosten für den Endverbraucher, und gleichzeitig zur Mithilfe der Erhaltung der Netzstabilität für den Energieversorger, entworfen, indem die optimale Batterieladung bzw. -entladung ermittelt wird. Ein Standardregler dient als Referenzfall für den Vergleich mit den mathematisch optimalen Reglern (ein nichtlinearer Regler, der das System perfekt kennt, sowie ein linearer), welche die Vorhersagen der Energieproduktion und des Verbrauchs berücksichtigen. Die Resultate einer Jahressimulation zeigen signifikantes Einsparungspotential beim nichtlinearen Regler, während der lineare aufgrund der näherungsweisen Systemkenntnis dahinter zurückfällt.

[1]  J. A. Ruiz-Arias,et al.  Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada and Europe , 2013 .

[2]  Chao Sun,et al.  Nonlinear Predictive Energy Management of Residential Buildings with Photovoltaics & Batteries , 2016 .

[3]  Abbas Khosravi,et al.  A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings , 2015 .

[4]  Isidor Buchmann,et al.  Batteries in a Portable World: A Handbook on Rechargeable Batteries for Non-Engineers , 2011 .

[5]  Francesco Piazza,et al.  Optimal Home Energy Management Under Dynamic Electrical and Thermal Constraints , 2013, IEEE Transactions on Industrial Informatics.

[6]  Kaamran Raahemifar,et al.  Energy advancement integrated predictive optimization of photovoltaic assisted battery energy storage system for cost optimization , 2016 .

[7]  Kendra Passow,et al.  Self-reported field efficiency of utility-scale inverters , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[8]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[9]  Massoud Pedram,et al.  A Near-Optimal Model-Based Control Algorithm for Households Equipped With Residential Photovoltaic Power Generation and Energy Storage Systems , 2016, IEEE Transactions on Sustainable Energy.

[10]  Ilya Kolmanovsky,et al.  Automotive Model Predictive Control , 2010 .

[11]  Michael A. Danzer,et al.  Optimal charge control strategies for stationary photovoltaic battery systems , 2014 .

[12]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[13]  Ponnuthurai Nagaratnam Suganthan,et al.  Ensemble methods for wind and solar power forecasting—A state-of-the-art review , 2015 .