Interactive Design of Developable Surfaces

We present a new approach to geometric modeling with developable surfaces and the design of curved-creased origami. We represent developables as splines and express the nonlinear conditions relating to developability and curved folds as quadratic equations. This allows us to utilize a constraint solver, which may be described as energy-guided projection onto the constraint manifold, and which is fast enough for interactive modeling. Further, a combined primal-dual surface representation enables us to robustly and quickly solve approximation problems.

[1]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[2]  Yan Chen,et al.  Folding a Patterned Cylinder by Rigid Origami , 2011 .

[3]  Kai Tang,et al.  A fully geometric approach for developable cloth deformation simulation , 2010, The Visual Computer.

[4]  Erik D. Demaine,et al.  Reconstructing David Huffman’s Legacy in Curved-Crease Folding , 2016 .

[5]  Tosiyasu L. Kunii,et al.  Bending and creasing virtual paper , 1994, IEEE Computer Graphics and Applications.

[6]  Takeo Igarashi,et al.  Interactive Design of Planar Curved Folding by Reflection , 2011, PG.

[7]  Otto Röschel,et al.  Developable (1, n) - Bézier surfaces , 1992, Comput. Aided Geom. Des..

[8]  Mathieu Perriollat,et al.  A computational model of bounded developable surfaces with application to image‐based three‐dimensional reconstruction , 2013, Comput. Animat. Virtual Worlds.

[9]  F. Pérez,et al.  Quasi-developable B-spline surfaces in ship hull design , 2007, Comput. Aided Des..

[10]  J. Hoschek Interpolation and approximation with developable B-spline surfaces , 1995 .

[11]  Johannes Wallner,et al.  Approximation algorithms for developable surfaces , 1999, Comput. Aided Geom. Des..

[12]  Günter Aumann,et al.  Interpolation with developable Bézier patches , 1991, Comput. Aided Geom. Des..

[13]  Charlie C. L. Wang,et al.  Achieving developability of a polygonal surface by minimum deformation: a study of global and local optimization approaches , 2004, The Visual Computer.

[14]  Chih-Hsing Chu,et al.  Geometric Design of Uniform Developable B-Spline Surfaces , 2004, DAC 2004.

[15]  Levi H. Dudte,et al.  Geometric mechanics of curved crease origami. , 2012, Physical review letters.

[16]  Alla Sheffer,et al.  D‐Charts: Quasi‐Developable Mesh Segmentation , 2005, Comput. Graph. Forum.

[17]  Robert J. Lang,et al.  Folding paper : the infinite possibilities of origami , 2013 .

[18]  Erik D. Demaine,et al.  (Non)Existence of Pleated Folds: How Paper Folds Between Creases , 2009, Graphs Comb..

[19]  Leah Blau,et al.  Computational Line Geometry , 2016 .

[20]  Helmut Pottmann,et al.  Developable rational Bézier and B-spline surfaces , 1995, Comput. Aided Geom. Des..

[21]  Martin Peternell,et al.  Developable surface fitting to point clouds , 2004, Comput. Aided Geom. Des..

[22]  Neil Meredith,et al.  Self-Detailing and Self-Documenting Systems for Wood Fabrication: The Burj Khalifa , 2012, AAG.

[23]  William H. Frey,et al.  Modeling buckled developable surfaces by triangulation , 2004, Comput. Aided Des..

[24]  Arnold Tubis,et al.  Betsy Ross Revisited: General Fold and One-Cut Regular and Star Polygons , 2016 .

[25]  David A. Huffman,et al.  Curvature and Creases: A Primer on Paper , 1976, IEEE Transactions on Computers.

[26]  J. Mitani,et al.  Making papercraft toys from meshes using strip-based approximate unfolding , 2004, SIGGRAPH 2004.

[27]  Takashi Maekawa,et al.  Design and Tessellation of B-Spline Developable Surfaces , 1998 .

[28]  Tomohiro Tachi,et al.  Origamizing Polyhedral Surfaces , 2010, IEEE Transactions on Visualization and Computer Graphics.

[29]  Johannes Wallner,et al.  Geometric Modeling with Conical Meshes and Developable Surfaces , 2006, ACM Trans. Graph..

[30]  Hans-Peter Seidel,et al.  Mesh segmentation driven by Gaussian curvature , 2005, The Visual Computer.

[31]  R. Mohan,et al.  Design of developable surfaces using duality between plane and point geometries , 1993, Comput. Aided Des..

[32]  Helmut Pottmann,et al.  Fitting B-spline curves to point clouds by curvature-based squared distance minimization , 2006, TOGS.

[33]  Chen,et al.  Developable Bezier function surface , 2002 .

[34]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[35]  Kenneth Rose,et al.  Eurographics Symposium on Geometry Processing (2007) Developable Surfaces from Arbitrary Sketched Boundaries , 2022 .

[36]  Günter Aumann,et al.  A simple algorithm for designing developable Bézier surfaces , 2003, Comput. Aided Geom. Des..

[37]  Martin Kilian,et al.  Curved folding , 2008, ACM Trans. Graph..

[38]  Hideo Saito,et al.  Foldable augmented papers with a relaxed constraint , 2011, 2011 1st International Symposium on Access Spaces (ISAS).

[39]  Eitan Grinspun,et al.  Flexible Developable Surfaces , 2012, Comput. Graph. Forum.

[40]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[41]  James F. O'Brien,et al.  Folding and crumpling adaptive sheets , 2013, ACM Trans. Graph..

[42]  Chih-Hsing Chu,et al.  Developable Bézier patches: properties and design , 2002, Comput. Aided Des..

[43]  Johannes Wallner,et al.  Freeform surfaces from single curved panels , 2008, ACM Trans. Graph..

[44]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[45]  Tomohiro Tachi,et al.  RIGID-FOLDABLE CYLINDERS AND CELLS , 2013 .

[46]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.