Hydrogenation of Ti50Zr25Co25 amorphous ribbons and its effect on their structural and mechanical properties

Changes in the structure and mechanical properties of Ti50Zr25Co25 melt-spun ribbons upon electrolytic hydrogenation have been investigated. Structural analyses of the as-spun ribbons revealed the sporadic presence of icosahedral (i) quasicrystalline short-range order (SRO) in the amorphous structure. Upon cathodic charging with hydrogen, the i-SRO vanished for a hydrogen content of about 21 at.% (hydrogen-to-metal atom ratio, H/M: 0.26), resulting in a fully amorphous structure. Simultaneously, the fracture strength was found to increase while the ribbons preserved their bending ductility. However, a significant reduction in the fracture strength and ductility of the ribbons was observed for hydrogen concentrations larger than 26 at.%. Variations in the mechanical stability are discussed based on a structure-property correlation.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Yuh Fukai,et al.  The Metal-Hydrogen System: Basic Bulk Properties , 2010 .

[3]  V. A. Levashov,et al.  Atomic Dynamics in Metallic Liquids and Glasses , 2007 .

[4]  K. Flores,et al.  Sub-nanometer open volume regions in a bulk metallic glass investigated by positron annihilation , 2007 .

[5]  E. Fleury,et al.  Ti-Based Amorphous Alloys and Composites as Potential Candidate Materials for Energy Applications , 2007 .

[6]  K. B. Kim,et al.  Hydrogen-induced amorphization and embrittlement resistance in Ti-based in situ composite with bcc-phase in an amorphous matrix , 2007 .

[7]  Y. Shibutani,et al.  Relationship between local geometrical factors and mechanical properties for Cu–Zr amorphous alloys , 2007 .

[8]  A. Inoue,et al.  Hydrogen permeation and structural features of melt-spun Ni–Nb–Zr amorphous alloys , 2005 .

[9]  K. Kelton,et al.  Local structure in Ti–Hf–Ni metallic glasses and its evolution with hydrogenation , 2005 .

[10]  Y. Fukai The Metal-Hydrogen System , 2005 .

[11]  D. Miracle,et al.  A structural model for metallic glasses , 2004, Microscopy and Microanalysis.

[12]  D. Zander,et al.  Hydrogen induced transformations in Zr–Cu–Ni–Al quasicrystals , 2004 .

[13]  A. Inoue,et al.  The effect of additional elements on hydrogen permeation properties of melt-spun Ni-Nb-Zr amorphous alloys , 2004 .

[14]  A. Inoue,et al.  Effects of Hydrogen on the Mechanical Properties of Ti50Ni25Cu25 Metallic Glass , 2002 .

[15]  N. Itoh,et al.  Hydrogen permeation through palladium-coated amorphous ZrMNi (M = Ti, Hf) alloy membranes , 2002 .

[16]  D. G. Morris,et al.  The influence of composition and low temperature annealing on hardness and ductility of rapidly solidified Al–Ni–Ce alloys , 2002 .

[17]  A. Inoue,et al.  Hydrogen Permeation Characteristics of Melt-Spun Ni-Nb-Zr Amorphous Alloy Membranes , 2001 .

[18]  D. Eliezer,et al.  Hydrogen effects on an amorphous Fe-Si-B alloy , 2000 .

[19]  R. Dauskardt,et al.  Hydrogen effects on the mechanical and fracture behavior of a Zr-Ti-Ni-Cu-Be bulk metallic glass , 2000 .

[20]  A. Inoue Stabilization of metallic supercooled liquid and bulk amorphous alloys , 2000 .

[21]  D. Eliezer,et al.  Hydrogenation of Zr-based metallic glasses and quasicrystals , 1999 .

[22]  D. Eliezer,et al.  An Overview of Hydrogen Interaction with Amorphous Alloys , 1999 .

[23]  K. Kelton,et al.  Icosahedral-phase formation and stability in Ti Zr Co alloys , 1996 .

[24]  Sietsma,et al.  Characterization of free volume in atomic models of metallic glasses. , 1995, Physical review. B, Condensed matter.

[25]  T. Perng,et al.  Embrittlement of amorphous Fe40Ni38Mo4B18 alloy by electrolytic hydrogen , 1995 .

[26]  H. Mizubayashi,et al.  Effects of annealing and hydrogen charging on the elastic property and the specific volume of amorphous Cu50Zr50 , 1994 .

[27]  Á. Cziráki,et al.  Hydrogen sorption and hydrogen-induced phase separation in a nearly equiatomic NiZr amorphous alloy , 1991 .

[28]  S. Poon,et al.  Synthesis and Properties of Metallic Glasses That Contain Aluminum , 1988, Science.

[29]  D. Stevenson,et al.  Hydrogen permeation studies of amorphous and crystallized NiTi alloys , 1988 .

[30]  C. Hsiao,et al.  Crystallization, hydrogen permeation and hydrogen embrittlement of amorphous NiP alloy , 1987 .

[31]  D. Duquette,et al.  Hydrogen embrittlement of amorphous alloys based on iron and nickel , 1987 .

[32]  J. Cantrell,et al.  Differential scanning calorimetry studies of amorphous Zr2PdHx and Zr3RhHx , 1985 .

[33]  R. Misra,et al.  Hydrogen embrittlement behaviour of a cobalt-based amorphous alloy , 1985 .

[34]  K. Baba,et al.  Diffusion of hydrogen in some amorphous alloys , 1984 .

[35]  U. Köster,et al.  Hydrogen embrittlement of metallic glasses , 1983 .

[36]  G. Schluckebier,et al.  Hydrogen in amorphous metals—I , 1982 .

[37]  T. Slavin,et al.  Liquid metal and hydrogen embrittlement of amorphous alloys , 1981 .

[38]  L. Tanner,et al.  Hydrides of metallic glass alloys , 1980 .

[39]  P. Gaskell REVIEW ARTICLE: On the structure of simple inorganic amorphous solids , 1979 .

[40]  S. Lynch Hydrogen embrittlement and liquid-metal embrittlement in nickel single crystals , 1979 .

[41]  A. Argon Plastic deformation in metallic glasses , 1979 .

[42]  A. Maeland COMPARISON OF HYDROGEN ABSORPTION IN GLASSY AND CRYSTALLINE STRUCTURES , 1978 .

[43]  Frans Spaepen,et al.  A microscopic mechanism for steady state inhomogeneous flow in metallic glasses , 1977 .

[44]  F. Luborsky,et al.  Stability of amorphous metallic alloys , 1976 .

[45]  E. M. Sherwood Less Common Metals , 1956 .

[46]  A. Götte,et al.  Metall , 1897 .