Astrocytes from Human Hippocampal Epileptogenic Foci Exhibit Action Potential–Like Responses

Summary: Purpose: We studied Na+ channel expression and the ability to generate action potential (AP)‐like responses in primary cultures of human astrocytes by whole cell patchclamp recording techniques.

[1]  Harald Sontheimer,et al.  Properties of human glial cells associated with epileptic seizure foci , 1998, Epilepsy Research.

[2]  H. Kettenmann,et al.  Action Potential‐generating Cells in Human Glioblastomas , 1997, Journal of neuropathology and experimental neurology.

[3]  H. Kettenmann,et al.  Neuron-like physiological properties of cells from human oligodendroglial tumors , 1996, Neuroscience.

[4]  S. Spencer,et al.  Depth electrode studies and intracellular dentate granule cell recordings in temporal lobe epilepsy , 1995, Annals of neurology.

[5]  H. Sontheimer,et al.  Rat hippocampal astrocytes exhibit electrogenic sodium-bicarbonate co-transport. , 1994, Journal of neurophysiology.

[6]  D. Attwell Glia and neurons in dialogue , 1994, Nature.

[7]  Fang Liu,et al.  Glutamate-mediated astrocyte–neuron signalling , 1994, Nature.

[8]  H. Sontheimer Voltage‐dependent ion channels in glial cells , 1994, Glia.

[9]  S. Waxman,et al.  Astrocyte Na+ channels are required for maintenance of Na+/K(+)-ATPase activity , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  D. Keyser,et al.  Synaptic transmission in the hippocampus: Critical role for glial cells , 1994, Glia.

[11]  M. Nedergaard,et al.  Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. , 1994, Science.

[12]  Steven Mennerick,et al.  Glial contributions to excitatory neurotransmission in cultured hippocampal cells , 1994, Nature.

[13]  S. Waxman,et al.  Expression of voltage-activated ion channels by astrocytes and oligodendrocytes in the hippocampal slice. , 1993, Journal of neurophysiology.

[14]  G. Shepherd,et al.  Comparison between the membrane and synaptic properties of human and rodent dentate granule cells , 1993, Brain Research.

[15]  E A Newman,et al.  Inward-rectifying potassium channels in retinal glial (Muller) cells , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  S. Waxman,et al.  Ion channels in spinal cord astrocytes in vitro. I. Transient expression of high levels of Na+ and K+ channels. , 1992, Journal of neurophysiology.

[17]  S. Waxman,et al.  Ion channels in spinal cord astrocytes in vitro. II. Biophysical and pharmacological analysis of two Na+ current types. , 1992, Journal of neurophysiology.

[18]  J. M. Ritchie Voltage-gated ion channels in schwann cells and glia , 1992, Trends in Neurosciences.

[19]  M. Frotscher,et al.  Heterogeneity in the Membrane Current Pattern of Identified Glial Cells in the Hippocampal Slice , 1992, The European journal of neuroscience.

[20]  D. D. Fraser,et al.  Voltage-activated K+ currents in acutely isolated hippocampal astrocytes , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  W. Walz Role of glial cells in the regulation of the brain ion microenvironment , 1989, Progress in Neurobiology.

[22]  L. Nowak,et al.  Ionic channels in mouse astrocytes in culture , 1987, Journal of Neuroscience.

[23]  J. M. Ritchie,et al.  The presence of voltage-gated sodium, potassium and chloride channels in rat cultured astrocytes , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[24]  D. Spencer,et al.  Surgery for epilepsy. , 1985, Neurologic clinics.

[25]  B. MacVicar,et al.  Voltage-dependent calcium channels in glial cells. , 1984, Science.

[26]  W. J. Brown,et al.  Distribution of Pyramidal Cell Density and Hyperexcitability in the Epileptic Human Hippocampal Formation , 1984, Epilepsia.

[27]  S. Goldring,et al.  Ionic determinants of membrane potential of cells presumed to be glia in cerebral cortex of cat. , 1973, Journal of neurophysiology.

[28]  F. L. Glo¨tzner Membrane properties of neuroglia in epileptogenic gliosis , 1973 .

[29]  R. Grossman,et al.  Intracellular potentials of inexcitable cells in epileptogenic cortex undergoing fibrillary gliosis after a local injury. , 1971, Brain research.

[30]  D. Pollen,et al.  Neuroglia: Biophysical Properties and Physiologic Function , 1970, Science.

[31]  A. Wyler Surgery in Epilepsy , 1969, Journal of the Tennessee Medical Association.

[32]  S. W. Kuffler,et al.  Physiological properties of glial cells in the central nervous system of amphibia. , 1966, Journal of neurophysiology.

[33]  W. Penfield,et al.  EPILEPTOGENIC LESIONS OF THE BRAIN: A HISTOLOGIC STUDY , 1940 .

[34]  W. Penfield,et al.  The structural basis of traumatic epilepsy and results of radical operation , 1930 .

[35]  D. Spencer,et al.  Neurotransmitters and their receptors in human temporal lobe epilepsy. , 1992, Epilepsy research. Supplement.

[36]  A. Cornell-Bell,et al.  Na(+)-current expression in rat hippocampal astrocytes in vitro: alterations during development. , 1991, Journal of neurophysiology.

[37]  D. Corey,et al.  Ion channels in vertebrate glia. , 1990, Annual review of neuroscience.

[38]  D P Corey,et al.  Ion channel expression by white matter glia: I. Type 2 astrocytes and oligodendrocytes , 1988, Glia.

[39]  M. Raff,et al.  Voltage-dependent potassium currents in cultured astrocytes , 1985, Nature.

[40]  F. Glötzner Membrane properties of neuroglia in epileptogenic gliosis. , 1973, Brain research.