The Chlorella variabilis NC64A Genome Reveals Adaptation to Photosymbiosis, Coevolution with Viruses, and Cryptic Sex[C][W]

This report describes the genome sequence of Chlorella variabilis NC64A. Surprisingly, given that NC64A has been thought to be asexual and nonmotile, this work identifies homologs of genes involved in meiosis, gamete fusion, and flagella. Chlorella variabilis NC64A, a unicellular photosynthetic green alga (Trebouxiophyceae), is an intracellular photobiont of Paramecium bursaria and a model system for studying virus/algal interactions. We sequenced its 46-Mb nuclear genome, revealing an expansion of protein families that could have participated in adaptation to symbiosis. NC64A exhibits variations in GC content across its genome that correlate with global expression level, average intron size, and codon usage bias. Although Chlorella species have been assumed to be asexual and nonmotile, the NC64A genome encodes all the known meiosis-specific proteins and a subset of proteins found in flagella. We hypothesize that Chlorella might have retained a flagella-derived structure that could be involved in sexual reproduction. Furthermore, a survey of phytohormone pathways in chlorophyte algae identified algal orthologs of Arabidopsis thaliana genes involved in hormone biosynthesis and signaling, suggesting that these functions were established prior to the evolution of land plants. We show that the ability of Chlorella to produce chitinous cell walls likely resulted from the capture of metabolic genes by horizontal gene transfer from algal viruses, prokaryotes, or fungi. Analysis of the NC64A genome substantially advances our understanding of the green lineage evolution, including the genomic interplay with viruses and symbiosis between eukaryotes.

[1]  M. Shishova,et al.  Phytohormones in algae , 2007, Russian Journal of Plant Physiology.

[2]  Nicholas H. Putnam,et al.  The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation , 2007, Proceedings of the National Academy of Sciences.

[3]  D. Cole The Intraflagellar Transport Machinery of Chlamydomonas reinhardtii , 2003, Traffic.

[4]  B. Milborrow,et al.  Special publication Evidence for a non-ACC ethylene biosynthesis pathway in lower plants , 1996 .

[5]  C. Posten,et al.  Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production , 2008, BioEnergy Research.

[6]  R. Durbin,et al.  GeneWise and Genomewise. , 2004, Genome research.

[7]  T. Letzel,et al.  Accessory active site residues of Streptomyces sp. N174 chitosanase , 2009, The FEBS journal.

[8]  J. Callis Plant biology: Auxin action , 2005, Nature.

[9]  Michael Lynch,et al.  Gene Duplication and Evolution , 2002, Science.

[10]  Dawn H. Nagel,et al.  The B73 Maize Genome: Complexity, Diversity, and Dynamics , 2009, Science.

[11]  M. Arisawa,et al.  Mutational analysis of chitin synthase 2 of Saccharomyces cerevisiae. Identification of additional amino acid residues involved in its catalytic activity. , 1998, European journal of biochemistry.

[12]  A. Grossman Paths toward Algal Genomics , 2005, Plant Physiology.

[13]  J. Logsdon,et al.  An Expanded Inventory of Conserved Meiotic Genes Provides Evidence for Sex in Trichomonas vaginalis , 2008, PloS one.

[14]  J. Pickett-Heaps Green algae: Structure, reproduction, and evolution in selected genera , 1975 .

[15]  David Posada,et al.  ProtTest: selection of best-fit models of protein evolution , 2005, Bioinform..

[16]  A. Bajguz Brassinosteroid enhanced the level of abscisic acid in Chlorella vulgaris subjected to short-term heat stress. , 2009, Journal of plant physiology.

[17]  P. Krishna Brassinosteroid-Mediated Stress Responses , 2003, Journal of Plant Growth Regulation.

[18]  G. Sandberg,et al.  Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis , 2006, Proceedings of the National Academy of Sciences.

[19]  A. Knoll,et al.  The early evolution of land plants , 1986 .

[20]  Y. Takahashi,et al.  Polyamines: essential factors for growth and survival , 2008, Planta.

[21]  P. Verslues,et al.  Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. , 2005, Biochemical Society transactions.

[22]  J. V. Van Etten,et al.  Characterization of two chitinase genes and one chitosanase gene encoded by Chlorella virus PBCV-1. , 1999, Virology.

[23]  M. Borodovsky,et al.  Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. , 2008, Genome research.

[24]  G. Jürgens,et al.  Auxin signaling in algal lineages: fact or myth? , 2009, Trends in plant science.

[25]  A. Bajguz,et al.  Metabolism of brassinosteroids in plants. , 2007, Plant physiology and biochemistry : PPB.

[26]  J. Bakken,et al.  ankA: an Ehrlichia phagocytophila Group Gene Encoding a Cytoplasmic Protein Antigen with Ankyrin Repeats , 2000, Infection and Immunity.

[27]  R. Mittler,et al.  Abiotic stress, the field environment and stress combination. , 2006, Trends in plant science.

[28]  M J Allen,et al.  The Phycodnaviridae: the story of how tiny giants rule the world. , 2009, Current topics in microbiology and immunology.

[29]  J. V. Van Etten,et al.  Chlorovirus: a genus of Phycodnaviridae that infects certain chlorella-like green algae. , 2005, Molecular plant pathology.

[30]  W. Reisser,et al.  A chitin-like glycan in the cell wall of a Chlorella sp. (Chlorococcales, Chlorophyceae) , 1995, Planta.

[31]  T. Speck,et al.  EARLY EVOLUTION OF LAND PLANTS: Phylogeny, Physiology, and Ecology of the Primary Terrestrial Radiation , 1998 .

[32]  N. Grimsley,et al.  Cryptic sex in the smallest eukaryotic marine green alga. , 2010, Molecular biology and evolution.

[33]  W. Gray,et al.  Plant hormone receptors: new perceptions. , 2008, Genes & development.

[34]  S. Eddy,et al.  Automated de novo identification of repeat sequence families in sequenced genomes. , 2002, Genome research.

[35]  Sara L. Zimmer,et al.  The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions , 2007, Science.

[36]  Masahiro Tanaka,et al.  Chitin synthesis in chlorovirus CVK2-infected chlorella cells. , 2002, Virology.

[37]  H. Ohigashi,et al.  Abscisic acid-dependent algal morphogenesis in the unicellular green alga Haematococcus pluvialis , 1997, Plant Growth Regulation.

[38]  J. V. Van Etten,et al.  Virion-Associated Restriction Endonucleases of Chloroviruses , 2006, Journal of Virology.

[39]  J. Beavo,et al.  Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. , 1995, Physiological reviews.

[40]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[41]  J. V. Van Etten,et al.  Chlorella virus PBCV-1 encodes a functional homospermidine synthase. , 1999, Virology.

[42]  Y. Van de Peer,et al.  The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis , 2008, Nature.

[43]  G. Burke,et al.  Distribution, Expression, and Motif Variability of Ankyrin Domain Genes in Wolbachia pipientis , 2005, Journal of bacteriology.

[44]  O. Gascuel,et al.  Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. , 2006, Systematic biology.

[45]  J. Battey,et al.  A reevaluation of the role of glycerol in carbon translocation in zooxanthellae-coelenterate symbiosis , 1984 .

[46]  A. Benson Following the path of carbon in photosynthesis: a personal story , 2004, Photosynthesis Research.

[47]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[48]  A. Jonsen,et al.  Evaluation of the role , 1989 .

[49]  M. Syvanen,et al.  Horizontal Gene Transfer , 2015, Evolution, Medicine, and Public Health.

[50]  J. Logsdon,et al.  Using a meiosis detection toolkit to investigate ancient asexual "scandals" and the evolution of sex. , 2008, BioEssays : news and reviews in molecular, cellular and developmental biology.

[51]  R. Sayre,et al.  Phycoremediation of heavy metals using transgenic microalgae. , 2007, Advances in experimental medicine and biology.

[52]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[53]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[54]  J. M. Smith Evolution of sex , 1975, Nature.

[55]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[56]  Jodie J. Yin,et al.  A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes , 2004, Genome Biology.

[57]  J. Claverie,et al.  Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus. , 2009, Genome research.

[58]  P. Morin Sex as an algal antiviral strategy , 2008, Proceedings of the National Academy of Sciences.

[59]  P. McCourt,et al.  Plant hormone receptors: perception is everything. , 2006, Genes & development.

[60]  A. Salamov,et al.  Green Evolution and Dynamic Adaptations Revealed by Genomes of the Marine Picoeukaryotes Micromonas , 2009, Science.

[61]  R. Offringa,et al.  Plant evolution: AGC kinases tell the auxin tale. , 2007, Trends in plant science.

[62]  H. Takeda Classification of Chlorella strains by cell wall sugar composition , 1988 .

[63]  Paramvir S. Dehal,et al.  Whole-Genome Shotgun Assembly and Analysis of the Genome of Fugu rubripes , 2002, Science.

[64]  U. Goodenough,et al.  Sex determination in Chlamydomonas. , 2007, Seminars in cell & developmental biology.

[65]  A. Tretyn,et al.  The chemical characteristic and distribution of brassinosteroids in plants. , 2003, Phytochemistry.

[66]  M. Allen,et al.  The “Cheshire Cat” escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection , 2008, Proceedings of the National Academy of Sciences.

[67]  S. Karakashian,et al.  EVOLUTION AND SYMBIOSIS IN THE GENUS CHLORELLA AND RELATED ALGAE , 1965 .

[68]  T. Watanabe,et al.  Site-directed mutagenesis of the Asp-197 and Asp-202 residues in chitinase A1 of Bacillus circulans WL-12. , 1994, Bioscience, biotechnology, and biochemistry.

[69]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[70]  Charles E. Wyman,et al.  AQUATIC BIOMASS RESOURCES AND CARBON DIOXIDE TRAPPING , 1993 .

[71]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[72]  A. Grossman,et al.  Insights into the acclimation of Chlamydomonas reinhardtii to sulfur deprivation , 2005, Photosynthesis Research.

[73]  Da-Peng Zhang,et al.  The Mg-chelatase H subunit is an abscisic acid receptor , 2006, Nature.

[74]  J. Poulain,et al.  The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla , 2007, Nature.

[75]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[76]  Sung-Hou Kim,et al.  Whole-proteome phylogeny of large dsDNA virus families by an alignment-free method , 2009, Proceedings of the National Academy of Sciences.

[77]  G. Pazour,et al.  Proteomic analysis of a eukaryotic cilium , 2005, The Journal of cell biology.

[78]  J. Botto,et al.  The plant cell , 2007, Plant Molecular Biology Reporter.

[79]  J. Bennetzen,et al.  The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants , 2008, Science.

[80]  G. Jürgens,et al.  The Evolving Complexity of the Auxin Pathway , 2008, The Plant Cell Online.

[81]  V. Huss,et al.  BIOCHEMICAL TAXONOMY AND MOLECULAR PHYLOGENY OF THE GENUS CHLORELLA SENSU LATO (CHLOROPHYTA) , 1999 .

[82]  Luis P. Villarreal,et al.  Viruses and the Evolution of Life , 2005 .

[83]  N. Imamura,et al.  Studies on the nitrogen utilization of endosymbiotic algae isolated from Japanese Paramecium bursaria , 2006 .

[84]  J. Chapman,et al.  Isothermal strand-displacement amplification applications for high-throughput genomics. , 2002, Genomics.

[85]  S. Hedges,et al.  Molecular Evidence for the Early Colonization of Land by Fungi and Plants , 2001, Science.

[86]  Ling V. Sun,et al.  Phylogenomics of the Reproductive Parasite Wolbachia pipientis wMel: A Streamlined Genome Overrun by Mobile Genetic Elements , 2004, PLoS biology.

[87]  Y. Bashan,et al.  INVOLVEMENT OF INDOLE‐3‐ACETIC ACID PRODUCED BY THE GROWTH‐PROMOTING BACTERIUM AZOSPIRILLUM SPP. IN PROMOTING GROWTH OF CHLORELLA VULGARIS 1 , 2008, Journal of phycology.

[88]  B. Vance Phytohormone effects on cell division inChlorella pyrenoidosa chick (TX-7-11-05) (chlorellaceae) , 1987, Journal of Plant Growth Regulation.

[89]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[90]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[91]  N. Tominaga,et al.  Effects of NaCl and KNO3 concentrations on the abscisic acid content of Dunaliella sp. (Chlorophyta) , 1993, Hydrobiologia.

[92]  J. van Staden,et al.  Cytokinin- and auxin-like activity in Cyanophyta and microalgae , 2002, Journal of Applied Phycology.

[93]  H. Takeda SUGAR COMPOSITION OF THE CELL WALL AND THE TAXONOMY OF CHLORELLA (CHLOROPHYCEAE) 1 , 1991 .

[94]  V. Siewers,et al.  Identification of an Abscisic Acid Gene Cluster in the Grey Mold Botrytis cinerea , 2006, Applied and Environmental Microbiology.

[95]  T. Kosaka,et al.  Growth kinetics of algal populations exsymbiotic from Paramecium bursaria by flow cytometry measurements. , 2001, Cytometry.

[96]  B. Wickstead,et al.  Dyneins Across Eukaryotes: A Comparative Genomic Analysis , 2007, Traffic.

[97]  J. Guisset,et al.  Differentiation, growth and morphogenesis: Acetabularia as a model system. , 1997, The New phytologist.

[98]  X. Huang,et al.  CAP3: A DNA sequence assembly program. , 1999, Genome research.

[99]  Takashi Yamada,et al.  Digestion of Chlorella Cells by Chlorovirus-encoded Polysaccharide Degrading Enzymes , 2001 .

[100]  K. David,et al.  A short history of auxin-binding proteins , 2002, Plant Molecular Biology.

[101]  V. Solovyev,et al.  Ab initio gene finding in Drosophila genomic DNA. , 2000, Genome research.

[102]  W. Sullivan,et al.  Identification of Wolbachia--host interacting factors through cytological analysis. , 2003, Microbes and infection.

[103]  P. Maillard,et al.  Determination of an ethylene biosynthesis pathway in the unicellular green alga,Haematococcus pluvialis. Relationship between growth and ethylene production , 1993, Journal of Applied Phycology.

[104]  T. Kadono,et al.  Flow cytometric studies of the host-regulated cell cycle in algae symbiotic with green paramecium , 2004, Protoplasma.

[105]  Jean-Michel Claverie,et al.  Phylogeny.fr: robust phylogenetic analysis for the non-specialist , 2008, Nucleic Acids Res..

[106]  R. Hoshina,et al.  Chlorella variabilis and Micractinium reisseri sp. nov. (Chlorellaceae, Trebouxiophyceae): Redescription of the endosymbiotic green algae of Paramecium bursaria (Peniculia, Oligohymenophorea) in the 120th year , 2010 .

[107]  Lex E. Flagel,et al.  Gene duplication and evolutionary novelty in plants. , 2009, The New phytologist.

[108]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[109]  H. Yin Effect of Auxin on Chlorella Vulgaris. , 1937, Proceedings of the National Academy of Sciences of the United States of America.

[110]  Debashish Bhattacharya,et al.  Origin and Evolution of Green Lichen Algae , 2001 .

[111]  Rolf Apweiler,et al.  InterProScan - an integration platform for the signature-recognition methods in InterPro , 2001, Bioinform..