Comparisons of gyrofluid and gyrokinetic simulations

The gyrokinetic and gyrofluid models show the most promise for large scale simulations of tokamak microturbulence. This paper discusses detailed comparisons of these two complementary approaches. Past comparisons with linear theory have been fairly good, therefore the emphasis here is on nonlinear comparisons. Simulations include simple two‐dimensional slab test cases, turbulent three‐dimensional slab cases, and toroidal cases, each modeling the nonlinear evolution of the ion temperature gradient instability. There is good agreement in both turbulent and coherent nonlinear slab comparisons in terms of the ion heat flux, both in magnitude and scaling with magnetic shear. However, the nonlinear saturation level for ‖Φ‖ in the slab comparisons shows differences of approximately 40%. Preliminary toroidal comparisons show agreement within 50%, in terms of ion heat flux and saturation level.

[1]  Patrick H. Diamond,et al.  Theory of mean poloidal flow generation by turbulence , 1991 .

[2]  Jose Milovich,et al.  Toroidal gyro‐Landau fluid model turbulence simulations in a nonlinear ballooning mode representation with radial modes , 1994 .

[3]  W. W. Lee,et al.  Gyrokinetic approach in particle simulation , 1981 .

[4]  Ramsey,et al.  Ion thermal confinement in the enhanced-confinement regime of the TFTR tokamak. , 1989, Physical review letters.

[5]  W. Lee,et al.  Gyrokinetic particle simulation of ion temperature gradient drift instabilities , 1988 .

[6]  T. S. Hahm,et al.  Nonlinear gyrokinetic equations for tokamak microturbulence , 1988 .

[7]  R. Sudan,et al.  Considerations of ion‐temperature‐gradient‐driven turbulence , 1991 .

[8]  E. Frieman,et al.  Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria , 1981 .

[9]  Nazikian,et al.  Radial scale length of turbulent fluctuations in the main core of TFTR plasmas. , 1993, Physical review letters.

[10]  W. Lee,et al.  Partially linearized algorithms in gyrokinetic particle simulation , 1993 .

[11]  Gregory W. Hammett,et al.  Gyro‐Landau fluid models for toroidal geometry , 1992 .

[12]  William Dorland,et al.  Gyrofluid turbulence models with kinetic effects , 1993 .

[13]  E. D. Fredrickson,et al.  Correlations of heat and momentum transport in the TFTR tokamak , 1990 .

[14]  W. Lee,et al.  Gyrokinetic Particle Simulation Model , 1987 .

[15]  Perkins,et al.  Fluid moment models for Landau damping with application to the ion-temperature-gradient instability. , 1990, Physical review letters.

[16]  G. Knorr,et al.  The integration of the vlasov equation in configuration space , 1976 .

[17]  Timothy J. Williams,et al.  Gyrokinetic simulations of E×B velocity‐shear effects on ion‐temperature‐gradient modes , 1993 .

[18]  Hasegawa,et al.  Self-organization of electrostatic turbulence in a cylindrical plasma. , 1987, Physical review letters.

[19]  Vickie E. Lynch,et al.  Electron diamagnetic effects on the resistive pressure‐gradient‐driven turbulence and poloidal flow generation , 1991 .

[20]  W. Manheimer Strong Turbulence Theory of Nonlinear Stabilization and Harmonic Generation , 1971 .

[21]  J. Krommes,et al.  Nonlinear evolution of drift instabilities , 1984 .

[22]  William Dorland,et al.  Developments in the gyrofluid approach to Tokamak turbulence simulations , 1993 .

[23]  Parker,et al.  Gyrokinetic simulation of ion temperature gradient driven turbulence in 3D toroidal geometry. , 1993, Physical review letters.

[24]  Paul,et al.  Long-wavelength density turbulence in the TFTR tokamak. , 1993, Physical review letters.

[25]  W. Lee,et al.  Saturation of drift instabilities by electron dynamics , 1985 .

[26]  N. Mattor Can Landau-fluid models describe nonlinear Landau damping , 1992 .

[27]  M. S. Chance,et al.  Hamiltonian guiding center drift orbit calculation for plasmas of arbitrary cross section , 1984 .

[28]  Waltz,et al.  Observation of temperature-dependent transport in the TFTR tokamak. , 1991, Physical review letters.

[29]  A. T. Ramsey,et al.  Nondimensional transport scaling in the Tokamak Fusion Test Reactor: Is tokamak transport Bohm or gyro‐Bohm? , 1993 .