Double Configuration Checking in Stochastic Local Search for Satisfiability

Stochastic local search (SLS) algorithms have shown effectiveness on satisfiable instances of the Boolean satisfiability (SAT) problem. However, their performance is still unsatisfactory on random k-SAT at the phase transition, which is of significance and is one of the empirically hardest distributions of SAT instances. In this paper, we propose a new heuristic called DCCA, which combines two configuration checking (CC) strategies with different definitions of configuration in a novel way. We use the DCCA heuristic to design an efficient SLS solver for SAT dubbed DCCASat. The experiments show that the DCCASat solver significantly outperforms a number of state-of-the-art solvers on extensive random k-SAT benchmarks at the phase transition. Moreover, DCCASat shows good performance on structured benchmarks, and a combination of DCCASat with a complete solver achieves state-of-the-art performance on structured benchmarks.

[1]  M. Mézard,et al.  Threshold values of random K-SAT from the cavity method , 2006 .

[2]  Chu Min Li,et al.  Diversification and Determinism in Local Search for Satisfiability , 2005, SAT.

[3]  Kaile Su,et al.  Comprehensive Score: Towards Efficient Local Search for SAT with Long Clauses , 2013, IJCAI.

[4]  Holger H. Hoos,et al.  Captain Jack: New Variable Selection Heuristics in Local Search for SAT , 2011, SAT.

[5]  Kaile Su,et al.  Local search for Boolean Satisfiability with configuration checking and subscore , 2013, Artif. Intell..

[6]  John Thornton,et al.  Additive versus Multiplicative Clause Weighting for SAT , 2004, AAAI.

[7]  Uwe Schöning,et al.  Choosing Probability Distributions for Stochastic Local Search and the Role of Make versus Break , 2012, SAT.

[8]  Wei Wu,et al.  Focused Random Walk with Configuration Checking and Break Minimum for Satisfiability , 2013, CP.

[9]  S Kirkpatrick,et al.  Critical Behavior in the Satisfiability of Random Boolean Expressions , 1994, Science.

[10]  Bart Selman,et al.  Incomplete Algorithms , 2021, Handbook of Satisfiability.

[11]  Adrian Balint,et al.  Improving Stochastic Local Search for SAT with a New Probability Distribution , 2010, SAT.

[12]  Kevin Leyton-Brown,et al.  Predicting Satisfiability at the Phase Transition , 2012, AAAI.

[13]  Kaile Su,et al.  Improving Local Search for Random 3-SAT Using Quantitative Configuration Checking , 2012, ECAI.

[14]  Riccardo Zecchina,et al.  Survey propagation: An algorithm for satisfiability , 2002, Random Struct. Algorithms.

[15]  Abdul Sattar,et al.  Local search with edge weighting and configuration checking heuristics for minimum vertex cover , 2011, Artif. Intell..

[16]  Dimitris Achlioptas,et al.  Random Satisfiability , 2009, Handbook of Satisfiability.

[17]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[18]  Yu Li,et al.  Satisfying versus Falsifying in Local Search for Satisfiability - (Poster Presentation) , 2012, SAT.

[19]  Bart Selman,et al.  Stochastic Search and Phase Transitions: AI Meets Physics , 1995, IJCAI.

[20]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[21]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[22]  Abdul Sattar,et al.  Weight-Enhanced Diversification in Stochastic Local Search for Satisfiability , 2013, IJCAI.

[23]  Alan J. Hu,et al.  Calysto: scalable and precise extended static checking , 2008, ICSE.

[24]  Holger H. Hoos,et al.  Dynamic Scoring Functions with Variable Expressions: New SLS Methods for Solving SAT , 2010, SAT.

[25]  Norbert Manthey Coprocessor 2.0 - A Flexible CNF Simplifier - (Tool Presentation) , 2012, SAT.

[26]  M. Mézard Passing Messages Between Disciplines , 2003, Science.