Update of variants identified in the pancreatic β‐cell KATP channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes

The most common genetic cause of neonatal diabetes and hyperinsulinism is pathogenic variants in ABCC8 and KCNJ11. These genes encode the subunits of the β‐cell ATP‐sensitive potassium channel, a key component of the glucose‐stimulated insulin secretion pathway. Mutations in the two genes cause dysregulated insulin secretion; inactivating mutations cause an oversecretion of insulin, leading to congenital hyperinsulinism, whereas activating mutations cause the opposing phenotype, diabetes. This review focuses on variants identified in ABCC8 and KCNJ11, the phenotypic spectrum and the treatment implications for individuals with pathogenic variants.

[1]  S. Ellard,et al.  Update of variants identified in the pancreatic β-cell KATPchannel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes , 2020, Yearbook of Paediatric Endocrinology.

[2]  T. Laver,et al.  Unravelling the genetic causes of mosaic islet morphology in congenital hyperinsulinism , 2019, The journal of pathology. Clinical research.

[3]  C. Stanley,et al.  Novel dominant KATP channel mutations in infants with congenital hyperinsulinism: Validation by in vitro expression studies and in vivo carrier phenotyping , 2019, American journal of medical genetics. Part A.

[4]  S. Karras,et al.  First Report of Diabetes Phenotype due to a Loss-of-Function ABCC8 Mutation Previously Known to Cause Congenital Hyperinsulinism , 2019, Case reports in genetics.

[5]  A. Hattersley,et al.  Cognitive, Neurological, and Behavioral Features in Adults With KCNJ11 Neonatal Diabetes , 2018, Diabetes Care.

[6]  S. Ellard,et al.  Clinical Diversity in Focal Congenital Hyperinsulinism in Infancy Correlates With Histological Heterogeneity of Islet Cell Lesions , 2018, Front. Endocrinol..

[7]  Diva D. De León,et al.  Prevalence of Adverse Events in Children With Congenital Hyperinsulinism Treated With Diazoxide , 2018, The Journal of clinical endocrinology and metabolism.

[8]  S. Detlefsen,et al.  Intraoperative Ultrasound: A Tool to Support Tissue-Sparing Curative Pancreatic Resection in Focal Congenital Hyperinsulinism , 2018, Front. Endocrinol..

[9]  Kenneth L. Jones,et al.  Effectiveness and safety of long-term treatment with sulfonylureas in patients with neonatal diabetes due to KCNJ11 mutations: an international cohort study , 2018, The lancet. Diabetes & endocrinology.

[10]  Kirk W. Johnson,et al.  A unique allosteric insulin receptor monoclonal antibody that prevents hypoglycemia in the SUR-1−/− mouse model of KATP hyperinsulinism , 2018, mAbs.

[11]  S. Greeley,et al.  Hypoglycemia in sulfonylurea‐treated KCNJ11‐neonatal diabetes: Mild‐moderate symptomatic episodes occur infrequently but none involving unconsciousness or seizures , 2018, Pediatric diabetes.

[12]  S. Seeholzer,et al.  Population pharmacokinetics of exendin‐(9‐39) and clinical dose selection in patients with congenital hyperinsulinism , 2018, British journal of clinical pharmacology.

[13]  M. Msall,et al.  ADHD, learning difficulties and sleep disturbances associated with KCNJ11‐related neonatal diabetes , 2017, Pediatric diabetes.

[14]  F. Ashcroft,et al.  An ABCC8 Nonsense Mutation Causing Neonatal Diabetes Through Altered Transcript Expression , 2017, Journal of clinical research in pediatric endocrinology.

[15]  A. Hattersley,et al.  Neuropsychological impairments in children with KCNJ11 neonatal diabetes , 2017, Diabetic medicine : a journal of the British Diabetic Association.

[16]  B. Shields,et al.  Population-Based Assessment of a Biomarker-Based Screening Pathway to Aid Diagnosis of Monogenic Diabetes in Young-Onset Patients , 2017, Diabetes Care.

[17]  H. Christesen,et al.  Both Low Blood Glucose and Insufficient Treatment Confer Risk of Neurodevelopmental Impairment in Congenital Hyperinsulinism: A Multinational Cohort Study , 2017, Front. Endocrinol..

[18]  S. Ellard,et al.  Atypical Forms of Congenital Hyperinsulinism in Infancy Are Associated With Mosaic Patterns of Immature Islet Cells , 2017, The Journal of clinical endocrinology and metabolism.

[19]  A. Hattersley,et al.  Management of sulfonylurea‐treated monogenic diabetes in pregnancy: implications of placental glibenclamide transfer , 2017, Diabetic medicine : a journal of the British Diabetic Association.

[20]  I. Banerjee,et al.  Extreme caution on the use of sirolimus for the congenital hyperinsulinism in infancy patient , 2017, Orphanet Journal of Rare Diseases.

[21]  A. Hattersley,et al.  Analysis of cell‐free fetal DNA for non‐invasive prenatal diagnosis in a family with neonatal diabetes , 2016, Diabetic medicine : a journal of the British Diabetic Association.

[22]  L. Philipson,et al.  Patients with KCNJ11‐related diabetes frequently have neuropsychological impairments compared with sibling controls , 2016, Diabetic medicine : a journal of the British Diabetic Association.

[23]  B. Shields,et al.  Systematic Population Screening, Using Biomarkers and Genetic Testing, Identifies 2.5% of the U.K. Pediatric Diabetes Population With Monogenic Diabetes , 2016, Diabetes Care.

[24]  A. Hattersley,et al.  Psychiatric morbidity in children with KCNJ11 neonatal diabetes , 2016, Diabetic medicine : a journal of the British Diabetic Association.

[25]  F. Ashcroft,et al.  Successful transfer to sulfonylureas in KCNJ11 neonatal diabetes is determined by the mutation and duration of diabetes , 2016, Diabetologia.

[26]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[27]  R. Scharfmann,et al.  Sulfonylurea Therapy Benefits Neurological and Psychomotor Functions in Patients With Neonatal Diabetes Owing to Potassium Channel Mutations , 2015, Diabetes Care.

[28]  A. Hattersley,et al.  The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study , 2015, The Lancet.

[29]  C. Stanley,et al.  Recommendations from the Pediatric Endocrine Society for Evaluation and Management of Persistent Hypoglycemia in Neonates, Infants, and Children. , 2015, The Journal of pediatrics.

[30]  L. Philipson,et al.  Age at the time of sulfonylurea initiation influences treatment outcomes in KCNJ11-related neonatal diabetes , 2015, Diabetologia.

[31]  Bale,et al.  Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology , 2015, Genetics in Medicine.

[32]  F. Ashcroft,et al.  Fetal Macrosomia and Neonatal Hyperinsulinemic Hypoglycemia Associated With Transplacental Transfer of Sulfonylurea in a Mother With KCNJ11-Related Neonatal Diabetes , 2014, Diabetes Care.

[33]  S. Ellard,et al.  Long-term follow-up of children with congenital hyperinsulinism on octreotide therapy. , 2014, The Journal of clinical endocrinology and metabolism.

[34]  Robert E. Brown,et al.  Sirolimus therapy in infants with severe hyperinsulinemic hypoglycemia. , 2014, The New England journal of medicine.

[35]  M. Zenker,et al.  Clinical and Genetic Evaluation of Patients with KATP Channel Mutations from the German Registry for Congenital Hyperinsulinism , 2014, Hormone Research in Paediatrics.

[36]  R. Scharfmann,et al.  Neuropsychological dysfunction and developmental defects associated with genetic changes in infants with neonatal diabetes mellitus: a prospective cohort study [corrected]. , 2013, The lancet. Diabetes & endocrinology.

[37]  H. Huopio,et al.  A Mouse Model of Human Hyperinsulinism Produced by the E1506K Mutation in the Sulphonylurea Receptor SUR1 , 2013, Diabetes.

[38]  H. Hakonarson,et al.  Dominant Form of Congenital Hyperinsulinism Maps to HK1 Region on 10q , 2013, Hormone Research in Paediatrics.

[39]  F. Ashcroft,et al.  Switching to Sulphonylureas in Children With iDEND Syndrome Caused by KCNJ11 Mutations Results in Improved Cerebellar Perfusion , 2013, Diabetes Care.

[40]  C. Stanley,et al.  Genotype and phenotype correlations in 417 children with congenital hyperinsulinism. , 2013, The Journal of clinical endocrinology and metabolism.

[41]  A. Green,et al.  Next-generation sequencing reveals deep intronic cryptic ABCC8 and HADH splicing founder mutations causing hyperinsulinism by pseudoexon activation. , 2013, American journal of human genetics.

[42]  S. Ellard,et al.  Clinical and molecular characterisation of 300 patients with congenital hyperinsulinism , 2010, European journal of endocrinology.

[43]  M. Msall,et al.  Visuomotor Performance in KCNJ11-Related Neonatal Diabetes Is Impaired in Children With DEND-Associated Mutations and May Be Improved by Early Treatment With Sulfonylureas , 2012, Diabetes Care.

[44]  S. Ellard,et al.  The heterogeneity of focal forms of congenital hyperinsulinism. , 2012, The Journal of clinical endocrinology and metabolism.

[45]  C. Sempoux,et al.  Morphological mosaicism of the pancreatic islets: a novel anatomopathological form of persistent hyperinsulinemic hypoglycemia of infancy. , 2011, The Journal of clinical endocrinology and metabolism.

[46]  Jeroen F. J. Laros,et al.  LOVD v.2.0: the next generation in gene variant databases , 2011, Human mutation.

[47]  S. Ellard,et al.  In Vitro Recovery of ATP-Sensitive Potassium Channels in β-Cells From Patients With Congenital Hyperinsulinism of Infancy , 2011, Diabetes.

[48]  A. Hattersley,et al.  Heterozygous ABCC8 mutations are a cause of MODY , 2011, Diabetologia.

[49]  F. Ashcroft,et al.  A mutation in KCNJ11 causing human hyperinsulinism (Y12X) results in a glucose-intolerant phenotype in the mouse , 2010, Diabetologia.

[50]  A. Hattersley,et al.  Entities and frequency of neonatal diabetes: data from the diabetes documentation and quality management system (DPV) , 2010, Diabetic medicine : a journal of the British Diabetic Association.

[51]  A. Hattersley,et al.  Incidence of neonatal diabetes in Austria–calculation based on the Austrian Diabetes Register , 2010, Pediatric diabetes.

[52]  M. Polak,et al.  Mutations in the ABCC8 gene can cause autoantibody-negative insulin-dependent diabetes. , 2009, Diabetes & metabolism.

[53]  A. Hattersley,et al.  Tooth Discoloration in Patients With Neonatal Diabetes After Transfer Onto Glibenclamide , 2009, Diabetes Care.

[54]  S. Ellard,et al.  Update of mutations in the genes encoding the pancreatic beta‐cell KATP channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism , 2009, Human mutation.

[55]  C. Bellanné-Chantelot,et al.  Chromosome 11p15 paternal isodisomy in focal forms of neonatal hyperinsulinism. , 2008, The Journal of clinical endocrinology and metabolism.

[56]  L. Philipson,et al.  Diagnosis and treatment of neonatal diabetes: an United States experience † , 2008, Pediatric diabetes.

[57]  C. Stanley,et al.  Exendin-(9–39) Corrects Fasting Hypoglycemia in SUR-1–/– Mice by Lowering cAMP in Pancreatic β-Cells and Inhibiting Insulin Secretion* , 2008, Journal of Biological Chemistry.

[58]  G. Rutter,et al.  A Rare Mutation in ABCC8/SUR1 Leading to Altered ATP-Sensitive K+ Channel Activity and β-Cell Glucose Sensing Is Associated With Type 2 Diabetes in Adults , 2008, Diabetes.

[59]  S. Ellard,et al.  An ABCC8 Gene Mutation and Mosaic Uniparental Isodisomy Resulting in Atypical Diffuse Congenital Hyperinsulinism , 2008, Diabetes.

[60]  S. Ellard,et al.  Mutations in the ABCC8 gene encoding the SUR1 subunit of the KATP channel cause transient neonatal diabetes, permanent neonatal diabetes or permanent diabetes diagnosed outside the neonatal period , 2007, Diabetes, obesity & metabolism.

[61]  F. Ashcroft,et al.  Permanent neonatal diabetes caused by dominant, recessive, or compound heterozygous SUR1 mutations with opposite functional effects. , 2007, American journal of human genetics.

[62]  A. Hattersley,et al.  Origin of de novo KCNJ11 mutations and risk of neonatal diabetes for subsequent siblings. , 2007, The Journal of clinical endocrinology and metabolism.

[63]  R. Scharfmann,et al.  Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. , 2006, The New England journal of medicine.

[64]  F. Ashcroft,et al.  Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. , 2006, The New England journal of medicine.

[65]  F. Ashcroft,et al.  A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes. , 2006, Human molecular genetics.

[66]  A. Hattersley,et al.  KCNJ11 activating mutations are associated with developmental delay, epilepsy and neonatal diabetes syndrome and other neurological features , 2006, European Journal of Human Genetics.

[67]  A. Hattersley,et al.  Mutations in KCNJ11, which encodes Kir6.2, are a common cause of diabetes diagnosed in the first 6 months of life, with the phenotype determined by genotype , 2006, Diabetologia.

[68]  S. Ellard,et al.  Mutations in the genes encoding the pancreatic beta‐cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) in diabetes mellitus and hyperinsulinism , 2006, Human mutation.

[69]  Á. Carracedo,et al.  Mutation spectra of ABCC8 gene in Spanish patients with hyperinsulinism of infancy (HI) , 2006, Human mutation.

[70]  H. Huopio,et al.  Noninvasive diagnosis of focal hyperinsulinism of infancy with [18F]-DOPA positron emission tomography. , 2006, Diabetes.

[71]  F. Ashcroft,et al.  Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. , 2005, Diabetes.

[72]  F. Ashcroft ATP-sensitive potassium channelopathies: focus on insulin secretion. , 2005, The Journal of clinical investigation.

[73]  F. Ashcroft,et al.  Relapsing diabetes can result from moderately activating mutations in KCNJ11. , 2005, Human molecular genetics.

[74]  A. Hattersley,et al.  High-dose glibenclamide can replace insulin therapy despite transitory diarrhea in early-onset diabetes caused by a novel R201L Kir6.2 mutation. , 2005, Diabetes care.

[75]  A. Hattersley,et al.  KCNJ11 activating mutations in Italian patients with permanent neonatal diabetes , 2005, Human mutation.

[76]  F. Ashcroft,et al.  Perspectives in Diabetes Activating Mutations in Kir 6 . 2 and Neonatal Diabetes New Clinical Syndromes , New Scientific Insights , and New Therapy , 2005 .

[77]  A. Eliakim,et al.  Hyperinsulinism of infancy: novel ABCC8 and KCNJ11 mutations and evidence for additional locus heterogeneity. , 2004, The Journal of clinical endocrinology and metabolism.

[78]  B. Glaser,et al.  Glibenclamide treatment in permanent neonatal diabetes mellitus due to an activating mutation in Kir6.2. , 2004, The Journal of clinical endocrinology and metabolism.

[79]  A. Hattersley,et al.  Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2: patient characteristics and initial response to sulfonylurea therapy. , 2004, Diabetes.

[80]  A. Hattersley,et al.  Permanent neonatal diabetes due to paternal germline mosaicism for an activating mutation of the KCNJ11 Gene encoding the Kir6.2 subunit of the beta-cell potassium adenosine triphosphate channel. , 2004, The Journal of clinical endocrinology and metabolism.

[81]  R. Gershoni-baruch,et al.  Permanent neonatal diabetes. , 2004, The Israel Medical Association journal : IMAJ.

[82]  M. Daly,et al.  Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. , 2004, Diabetes.

[83]  F. Ashcroft,et al.  Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. , 2004, The New England journal of medicine.

[84]  P. Rorsman,et al.  Glucose dependent K+-channels in pancreaticβ-cells are regulated by intracellular ATP , 1985, Pflügers Archiv.

[85]  K. Becker,et al.  The basic structural lesion of persistent neonatal hypoglycaemia with hyperinsulinism: deficiency of pancreatic D cells or hyperactivity of B cells? , 1984, Diabetologia.

[86]  T. Hansen,et al.  The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. , 2003, Diabetes.

[87]  M. McCarthy,et al.  Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. , 2003, Diabetes.

[88]  H. Huopio,et al.  A new subtype of autosomal dominant diabetes attributable to a mutation in the gene for sulfonylurea receptor 1 , 2003, The Lancet.

[89]  T. Hansen,et al.  The E 23 K Variant of Kir 6 . 2 Associates With Impaired Post – OGTT Serum Insulin Response and Increased Risk of Type 2 Diabetes , 2003 .

[90]  S. Shyng,et al.  Identification of a Familial Hyperinsulinism-causing Mutation in the Sulfonylurea Receptor 1 That Prevents Normal Trafficking and Function of KATP Channels* , 2002, The Journal of Biological Chemistry.

[91]  C. Junien,et al.  Heterogeneity of persistent hyperinsulinaemic hypoglycaemia. A series of 175 cases , 2001, European Journal of Pediatrics.

[92]  A. Cotterill,et al.  Histologic Findings in Persistent Hyperinsulinemic Hypoglycemia of Infancy: Australian Experience , 2000, Pediatric and developmental pathology : the official journal of the Society for Pediatric Pathology and the Paediatric Pathology Society.

[93]  L. Aguilar-Bryan,et al.  Sur1 Knockout Mice , 2000, The Journal of Biological Chemistry.

[94]  J. Corbett,et al.  Targeted Overactivity of β Cell KATP Channels Induces Profound Neonatal Diabetes , 2000, Cell.

[95]  C. Junien,et al.  Genetics of neonatal hyperinsulinism , 2000, Archives of disease in childhood. Fetal and neonatal edition.

[96]  J. Koster,et al.  Targeted overactivity of beta cell K(ATP) channels induces profound neonatal diabetes. , 2000, Cell.

[97]  J. Bryan,et al.  Molecular biology of adenosine triphosphate-sensitive potassium channels. , 1999, Endocrine reviews.

[98]  B. Liss,et al.  Alternative sulfonylurea receptor expression defines metabolic sensitivity of K‐ATP channels in dopaminergic midbrain neurons , 1999, The EMBO journal.

[99]  H. Huopio,et al.  A point mutation inactivating the sulfonylurea receptor causes the severe form of persistent hyperinsulinemic hypoglycemia of infancy in Finland. , 1999, Diabetes.

[100]  J. Miyazaki,et al.  Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[101]  J. Schmahmann,et al.  The cerebellar cognitive affective syndrome. , 1998, Brain : a journal of neurology.

[102]  C. Junien,et al.  Somatic deletion of the imprinted 11p15 region in sporadic persistent hyperinsulinemic hypoglycemia of infancy is specific of focal adenomatous hyperplasia and endorses partial pancreatectomy. , 1997, The Journal of clinical investigation.

[103]  F. Ashcroft,et al.  Overlapping distribution of KATP channel‐forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain , 1997, FEBS letters.

[104]  M. Permutt,et al.  Mutations in the sulonylurea receptor gene are associated with familial hyperinsulinism in Ashkenazi Jews. , 1996, Human molecular genetics.

[105]  E. Lightner,et al.  Mutation of the pancreatic islet inward rectifier Kir6.2 also leads to familial persistent hyperinsulinemic hypoglycemia of infancy. , 1996, Human molecular genetics.

[106]  M. Permutt,et al.  Adenosine Diphosphate as an Intracellular Regulator of Insulin Secretion , 1996, Science.

[107]  P. Smith,et al.  Cloning and functional expression of the cDNA encoding a novel ATP‐sensitive potassium channel subunit expressed in pancreatic β‐cells, brain, heart and skeletal muscle , 1995 .

[108]  J. Bryan,et al.  Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. , 1995, Science.

[109]  P. Mathew,et al.  Persistent Neonatal Hyperinsulinism , 1988, Clinical pediatrics.

[110]  Stephen J. H. Ashcroft,et al.  Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells , 1984, Nature.

[111]  D. Cook,et al.  Intracellular ATP directly blocks K+ channels in pancreatic B-cells , 1984, Nature.