Bark characterization of a commercial Eucalyptus urophylla hybrid clone in view of its potential use as a biorefinery raw material

[1]  A. Lourenço,et al.  Eucalyptus globulus Stumps Bark: Chemical and Anatomical Characterization Under a Valorisation Perspective , 2020, Waste and Biomass Valorization.

[2]  J. Gominho,et al.  Bark residues valorization potential regarding antioxidant and antimicrobial extracts , 2020, Wood Science and Technology.

[3]  Graciene S. Mota,et al.  Characterisation and valorisation of the bark of Myrcia eximia DC. trees from the Amazon rainforest as a source of phenolic compounds , 2020 .

[4]  L. Domingues,et al.  Valorization of Eucalyptus nitens bark by organosolv pretreatment for the production of advanced biofuels , 2019, Industrial Crops and Products.

[5]  J. Gominho,et al.  Potential of Eucalyptus globulus industrial bark as a biorefinery feedstock: Chemical and fuel characterization , 2018, Industrial Crops and Products.

[6]  H. Pereira,et al.  Tannin extraction and characterization of polar extracts from the barks of two Eucalyptus urophylla hybrids , 2018, BioResources.

[7]  H. Pereira,et al.  Chemical and anatomical characterization, and antioxidant properties of barks from 11 Eucalyptus species , 2018, European Journal of Wood and Wood Products.

[8]  H. Pereira,et al.  Bark anatomy, chemical composition and ethanol-water extract composition of Anadenanthera peregrina and Anadenanthera colubrina , 2017, PloS one.

[9]  F. Dutheil,et al.  Decreased prevalence of cancer in patients with multiple sclerosis: A case-control study , 2017, PloS one.

[10]  F. Lahr,et al.  PHYSICAL-MECHANICAL CHARACTERIZATION OF Eucalyptus urophylla WOOD , 2017 .

[11]  H. Pereira,et al.  Cork-Containing Barks—A Review , 2017, Front. Mater..

[12]  P. Baas,et al.  IAWA List of Microscopic Bark Features , 2016 .

[13]  H. Pereira,et al.  Cellular structure and chemical composition of cork from Plathymenia reticulata occurring in the Brazilian Cerrado , 2016 .

[14]  H. Pereira,et al.  Chemical characterization of the bark of Eucalyptus urophylla hybrids in view of their valorization in biorefineries , 2016 .

[15]  A. Lourenço,et al.  The Potential of Hydrothermally Pretreated Industrial Barks From E. globulus as a Feedstock for Pulp Production , 2016 .

[16]  H. Pereira,et al.  Bark Characterisation of the Brazilian Hardwood Goupia glabra in Terms of Its Valorisation , 2016 .

[17]  H. Pereira,et al.  The bark of Eucalyptus sideroxylon as a source of phenolic extracts with anti-oxidant properties , 2016 .

[18]  H. Pereira,et al.  Chemical and structural characterization of the bark of Albizia niopoides trees from the Amazon , 2016, Wood Science and Technology.

[19]  H. Pereira,et al.  Copaifera langsdorffii Bark as a Source of Chemicals: Structural and Chemical Characterization , 2016 .

[20]  J. Gominho,et al.  Stumps of Eucalyptus globulus as a Source of Antioxidant and Antimicrobial Polyphenols , 2014, Molecules.

[21]  F. Mori,et al.  The chemistry of Kielmeyera coriacea outer bark: a potential source for cork , 2014, European Journal of Wood and Wood Products.

[22]  J. Gominho,et al.  Modeling and Optimization of Eucalyptus globulus Bark and Wood Delignification using Response Surface Methodology , 2014 .

[23]  H. Pereira,et al.  Evaluation on paper making potential of nine Eucalyptus species based on wood anatomical features , 2014 .

[24]  E. deAzevedo,et al.  Effects of pretreatment on morphology, chemical composition and enzymatic digestibility of eucalyptus bark: a potentially valuable source of fermentable sugars for biofuel production – part 1 , 2013, Biotechnology for Biofuels.

[25]  H. Pereira,et al.  Bark anatomy and cell size variation in Quercus faginea , 2013, Turkish Journal of Botany.

[26]  J. Gominho,et al.  Fractioning and chemical characterization of barks of Betula pendula and Eucalyptus globulus. , 2013 .

[27]  A. Rodrigues,et al.  Eucalyptus globulus bark as a source of polyphenolic compounds with biological activity , 2013 .

[28]  C. Freire,et al.  Phenolic composition and antioxidant activity of Eucalyptus grandis, E. urograndis (E. grandis × E. urophylla) and E. maidenii bark extracts , 2012 .

[29]  J. Gominho,et al.  INCORPORATION OF BARK AND TOPS IN EUCALYPTUS GLOBULUS WOOD PULPING , 2012 .

[30]  Emmanuel Kakaras,et al.  Ash properties and environmental impact of various biomass and coal fuels and their blends , 2011 .

[31]  M. T. A. Minhoni,et al.  Análise química da madeira e casca de diferentes tipos de eucalipto antes e durante o cultivo de shiitake em toras , 2010 .

[32]  V. Angyalossy,et al.  A new method to obtain good anatomical slides of heterogeneous plant parts , 2010 .

[33]  T. K. Bhat,et al.  DPPH antioxidant assay revisited , 2009 .

[34]  G. Vázquez,et al.  Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts , 2008 .

[35]  N. Chaffey Esau's Plant Anatomy, Meristems, Cells, and Tissues of the Plant Body: their Structure, Function, and Development. 3rd edn. , 2006 .

[36]  R. Evert Esau's Plant Anatomy,: Meristems, Cells And Tissues Of The Plant Body- Their Structure, Function And Development , 2005 .

[37]  Helena Pereira,et al.  Wood Chemistry in Relation to Quality , 2004 .

[38]  F. Shahidi,et al.  Extraction and analysis of phenolics in food. , 2004, Journal of chromatography. A.

[39]  H. Pereira,et al.  WITHIN AND BETWEEN-TREE VARIATION OF BARK CONTENT AND WOOD DENSITY OF EUCALYPTUS GLOBULUS IN COMMERCIAL PLANTATIONS , 2001 .

[40]  H. Pereira,et al.  Within-tree variation in phloem cell dimensions and proportions in Eucalyptus globulus. , 2000 .

[41]  H. Pereira,et al.  VARIABILITY OF FIBRE LENGTH IN WOOD AND BARK IN EUCALYPTUS GLOBULUS , 2000 .

[42]  Ralph E.H. Sims,et al.  Fuel characteristics of short rotation forest biomass , 1999 .

[43]  Mengcheng Tang,et al.  The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals , 1999 .

[44]  H. Pereira,et al.  Variability of bark structure in plantation-grown Eucalyptus globulus , 1999 .

[45]  H. Pereira Variability in the chemical composition of plantation eucalypts (Eucalyptus globulus Labill.) , 1988 .

[46]  J. Tippett,et al.  Junction complexes between sieve tubes in the secondary phloem of Myrtaceae , 1984 .

[47]  V. L. Singleton,et al.  Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents , 1965, American Journal of Enology and Viticulture.