Lithium‐Ion Batteries Containing Surfactants for the Protection of Graphite Anode against the Passivation Layer Byproducts

[1]  Ziqi Zeng,et al.  Revealing Surfactant Effect of Trifluoromethylbenzene in Medium‐Concentrated PC Electrolyte for Advanced Lithium‐Ion Batteries , 2023, Advanced science.

[2]  Y. Meng,et al.  Designing better electrolytes , 2022, Science.

[3]  Yi-Rong Pei,et al.  A medium-entropy transition metal oxide cathode for high-capacity lithium metal batteries , 2022, Nature Communications.

[4]  M. Anouti,et al.  Non-Flammable Sodium Asymmetric Imide Salt-Based Deep Eutectic Solvent for Supercapacitor Applications. , 2022, ChemPhysChem.

[5]  Junda Huang,et al.  Li2CO3/LiF‐Rich Heterostructured Solid Electrolyte Interphase with Superior Lithiophilic and Li+‐Transferred Characteristics via Adjusting Electrolyte Additives , 2022 .

[6]  Mingquan Liu,et al.  How Can the Electrode Influence the Formation of the Solid Electrolyte Interface? , 2021, ACS Energy Letters.

[7]  M. Anouti,et al.  “Less is More′′: Ultra Low LiPF 6 Concentrated Electrolyte for Efficient Li‐Ion Batteries , 2021, Batteries & Supercaps.

[8]  Xiaogang Zhang,et al.  Regulation of SEI Formation by Anion Receptors to Achieve Ultra‐Stable Lithium‐Metal Batteries , 2021, Angewandte Chemie.

[9]  M. Anouti,et al.  Phosphonium ionic liquid-based electrolyte for high voltage Li-ion batteries: Effect of ionic liquid ratio , 2021, Journal of Applied Electrochemistry.

[10]  Junda Huang,et al.  Optimizing Electrode/Electrolyte Interphases and Li‐Ion Flux/Solvation for Lithium‐Metal Batteries with Qua‐Functional Heptafluorobutyric Anhydride , 2021, Angewandte Chemie.

[11]  Junda Huang,et al.  Optimizing Electrode/Electrolyte Interphases and Li-ion Flux/Solvation with Qua-functional Heptafluorobutyric Anhydride. , 2021, Angewandte Chemie.

[12]  Xiaogang Zhang,et al.  Regulation of SEI Formation by Anion Receptors to Achieve Ultra-Stable Lithium Metal Battery. , 2021, Angewandte Chemie.

[13]  Pei Dong,et al.  A Growing Appreciation for the Role of LiF in the Solid Electrolyte Interphase , 2021, Advanced Energy Materials.

[14]  M. Anouti,et al.  Low-Concentrated Lithium Hexafluorophosphate Ternary-based Electrolyte for a Reliable and Safe NMC/Graphite Lithium-Ion Battery. , 2021, The journal of physical chemistry letters.

[15]  R. Bogdanowicz,et al.  Electrochemical oxidation of PFOA and PFOS in landfill leachates at low and highly boron-doped diamond electrodes. , 2021, Journal of hazardous materials.

[16]  M. Winter,et al.  On the Beneficial Impact of Li2CO3 as Electrolyte Additive in NCM523 ∥ Graphite Lithium Ion Cells Under High‐Voltage Conditions , 2021, Advanced Energy Materials.

[17]  Ji‐Guang Zhang,et al.  Recent Progress in Understanding Solid Electrolyte Interphase on Lithium Metal Anodes , 2020, Advanced Energy Materials.

[18]  Baoping Lin,et al.  Surface‐Functionalized Graphite as Long Cycle Life Anode Materials for Lithium‐Ion Batteries , 2020 .

[19]  M. Winter,et al.  Fluor und Lithium: Ideale Partner für Elektrolyte in wiederaufladbaren Hochleistungsbatterien , 2019, Angewandte Chemie.

[20]  M. Winter,et al.  Fluorine and Lithium: Ideal Partners for High-Performance Rechargeable Battery Electrolytes. , 2019, Angewandte Chemie.

[21]  B. Lucht,et al.  Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries , 2019, Joule.

[22]  O. Borodin,et al.  Identifying the components of the solid–electrolyte interphase in Li-ion batteries , 2019, Nature Chemistry.

[23]  Zaiping Guo,et al.  Toward High‐Performance Hybrid Zn‐Based Batteries via Deeply Understanding Their Mechanism and Using Electrolyte Additive , 2019, Advanced Functional Materials.

[24]  Chao Lai,et al.  Cationic Surfactant-Based Electrolyte Additives for Uniform Lithium Deposition via Lithiophobic Repulsion Mechanisms. , 2018, Journal of the American Chemical Society.

[25]  Kevin N. Wood,et al.  XPS on Li-Battery-Related Compounds: Analysis of Inorganic SEI Phases and a Methodology for Charge Correction , 2018, ACS Applied Energy Materials.

[26]  Y. A. Gandomi,et al.  Enabling high rate charge and discharge capability, low internal resistance, and excellent cycleability for Li-ion batteries utilizing graphene additives , 2018 .

[27]  Erik J. Berg,et al.  Decomposition of LiPF6 in High Energy Lithium-Ion Batteries Studied with Online Electrochemical Mass Spectrometry , 2016 .

[28]  Rémi Dedryvère,et al.  Tris(2,2,2-trifluoroethyl) phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode , 2015 .

[29]  M. Anouti,et al.  LiTDI as electrolyte salt for Li-ion batteries: transport properties in EC/DMC , 2015 .

[30]  B. Lucht,et al.  Surface phenomena of high energy Li(Ni 1/3 Co 1/3 Mn 1/3 )O 2 /graphite cells at high temperature and high cutoff voltages , 2014 .

[31]  M. Anouti,et al.  Impact of Solid Electrolyte Interphase lithium salts on cycling ability of Li-ion battery: Beneficial effect of glymes additives , 2014 .

[32]  Yukihiro Okuno,et al.  Additive effect on reductive decomposition and binding of carbonate-based solvent toward solid electrolyte interphase formation in lithium-ion battery. , 2013, Journal of the American Chemical Society.

[33]  K. Saiki,et al.  Electrical and spectroscopic investigations on the reduction mechanism of graphene oxide , 2013 .

[34]  Yue Qi,et al.  Defect Thermodynamics and Diffusion Mechanisms in Li2CO3 and Implications for the Solid Electrolyte Interphase in Li-Ion Batteries , 2013 .

[35]  E. Chan,et al.  Surface tension of viscous biopolymer solutions measured using the du Nouy ring method and the drop weight methods , 2012, Polymer Bulletin.

[36]  Jennifer Jones,et al.  Solubilization of SEI lithium salts in alkylcarbonate solvents , 2011 .

[37]  M. Anouti,et al.  Thermodynamic of LiF dissolution in alkylcarbonates and some of their mixtures with water , 2009 .

[38]  J. Riess Highly fluorinated amphiphilic molecules and self-assemblies with biomedical potential , 2009 .

[39]  I. Profatilova,et al.  Enhanced thermal properties of the solid electrolyte interphase formed on graphite in an electrolyte with fluoroethylene carbonate , 2009 .

[40]  Stephen J. Harris,et al.  Solubility of Lithium Salts Formed on the Lithium-Ion Battery Negative Electrode Surface in Organic Solvents , 2009 .

[41]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[42]  E. Peter Roth,et al.  Abuse Response of 18650 Li-Ion Cells with Different Cathodes Using EC:EMC/LiPF6 and EC:PC:DMC/LiPF6 Electrolytes , 2008 .

[43]  Shengbo Zhang A review on electrolyte additives for lithium-ion batteries , 2006 .

[44]  Kristina Edström,et al.  Characterisation of the SEI formed on natural graphite in PC-based electrolytes , 2004 .

[45]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[46]  Kristina Edström,et al.  Chemical Composition and Morphology of the Elevated Temperature SEI on Graphite , 2001 .