Bogdanov–Takens singularity in the simple memristive time-delay system

In this paper, a simple memristive system is considered. We obtain existence of Bogdanov–Takens (B–T) bifurcation at the equilibrium in the 2D memristive time-delay system. With the change of two bifurcation parameters, in particular, it will lead to different bifurcations when the delay passes a certain critical value. Based on center manifold and classic normal form method, Hopf, pitchfork, homoclinic, and double limit cycle bifurcation are derived.

[1]  Weihua Jiang,et al.  Bogdanov–Takens singularity in Van der Pol’s oscillator with delayed feedback , 2007 .

[2]  Cuomo,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[3]  Yongli Song,et al.  Bogdanov–Takens bifurcation in an oscillator with negative damping and delayed position feedback , 2013 .

[4]  C. Volos,et al.  Hyperchaotic memristive system with hidden attractors and its adaptive control scheme , 2017, Nonlinear Dynamics.

[5]  Bocheng Bao,et al.  Hidden extreme multistability in memristive hyperchaotic system , 2017 .

[6]  Luigi Fortuna,et al.  Chua's Circuit Implementations: Yesterday, Today and Tomorrow , 2009 .

[7]  Zhouchao Wei,et al.  Hidden Attractors and Dynamical Behaviors in an Extended Rikitake System , 2015, Int. J. Bifurc. Chaos.

[8]  Chuandong Li,et al.  Bogdanov–Takens Singularity in Tri-Neuron Network With Time Delay , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[9]  Chuandong Li,et al.  Bogdanov-Takens bifurcation in a single inertial neuron model with delay , 2012, Neurocomputing.

[10]  L. Magalhães,et al.  Normal Forms for Retarded Functional Differential Equations with Parameters and Applications to Hopf Bifurcation , 1995 .

[11]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[12]  P. J. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[13]  Baodong Zheng,et al.  Explicit formulas for computing the normal form of Bogdanov–Takens bifurcation in delay differential equations , 2017 .

[14]  Leon O. Chua,et al.  Memristor oscillators , 2008, Int. J. Bifurc. Chaos.

[15]  Julien Clinton Sprott,et al.  Multistability in symmetric chaotic systems , 2015 .

[16]  L. Magalhães,et al.  Normal Forms for Retarded Functional Differential Equations and Applications to Bogdanov-Takens Singularity , 1995 .

[17]  Matjaz Perc,et al.  Bifurcation analysis of two disc dynamos with viscous friction and multiple time delays , 2019, Appl. Math. Comput..

[18]  Yu Zhang,et al.  Coexisting multiple attractors and riddled basins of a memristive system. , 2018, Chaos.

[19]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[20]  Leon O. Chua,et al.  The Four-Element Chua's Circuit , 2008, Int. J. Bifurc. Chaos.

[21]  Yi Shen,et al.  Hopf bifurcation of a predator–prey system with predator harvesting and two delays , 2013 .

[22]  P. Linsay Period Doubling and Chaotic Behavior in a Driven Anharmonic Oscillator , 1981 .

[23]  B. Hassard,et al.  Theory and applications of Hopf bifurcation , 1981 .

[24]  Luigi Fortuna,et al.  Attitude control in walking hexapod robots: an analogic spatio-temporal approach , 2002, Int. J. Circuit Theory Appl..

[25]  Viet-Thanh Pham,et al.  Bifurcation analysis and circuit realization for multiple-delayed Wang–Chen system with hidden chaotic attractors , 2016 .

[26]  Bharathwaj Muthuswamy,et al.  Implementing Memristor Based Chaotic Circuits , 2010, Int. J. Bifurc. Chaos.

[27]  Luigi Fortuna,et al.  Simple Memristive Time-Delay Chaotic Systems , 2013, Int. J. Bifurc. Chaos.

[28]  Yingxiang Xu,et al.  Homoclinic orbits and Hopf bifurcations in delay differential systems with T–B singularity , 2008 .

[29]  S. Chow,et al.  Normal Forms and Bifurcation of Planar Vector Fields , 1994 .

[30]  Johan A. K. Suykens,et al.  True random bit generation from a double-scroll attractor , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[31]  Chunbiao Li,et al.  A Memristive Chaotic Oscillator With Increasing Amplitude and Frequency , 2018, IEEE Access.

[32]  Jaume Llibre,et al.  On Uniqueness of Limit Cycles in General Bogdanov-Takens Bifurcation , 2018, Int. J. Bifurc. Chaos.

[33]  Akif Akgul,et al.  Amplitude Control Analysis of a Four-Wing Chaotic Attractor, its Electronic Circuit Designs and Microcontroller-Based Random Number Generator , 2017, J. Circuits Syst. Comput..